kk Blog —— 通用基础

date [-d @int|str] [+%s|"+%F %T"]

socket建立连接 sys_connect

http://blog.csdn.net/chensichensi/article/details/5272346

http://blog.csdn.net/qy532846454/article/details/7882819

http://www.2cto.com/kf/201303/198459.html

1
2
3
4
5
6
7
8
connect(fd, servaddr, addrlen);
-> SYSCALL_DEFINE3()
-> sock->ops->connect() == inet_stream_connect (sock->ops即inet_stream_ops)
-> tcp_v4_connect()
	-> inet_hash_connect()
		-> __inet_hash_connect()
			-> check_established()
				-> __inet_check_established()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
		int, addrlen)
{
	struct socket *sock;
	struct sockaddr_storage address;
	int err, fput_needed;
	/* 找到文件描述符对应的BSD socket结构,在前面的socket调用中建立*/
	sock = sockfd_lookup_light(fd, &err, &fput_needed);
	if (!sock)
		goto out;
	/* copy对端的地址到内核空间 */
	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
	if (err < 0)
		goto out_put;

	err =
	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
	if (err)
		goto out_put;
	/* 调用该BSD socket对应的connect调用 */
	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
				 sock->file->f_flags);
out_put:
	/* 释放文件的引用 */
	fput_light(sock->file, fput_needed);
out:
	return err;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/*
 *    Connect to a remote host. There is regrettably still a little
 *    TCP 'magic' in here.
 */
int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
			int addr_len, int flags)
{
	struct sock *sk = sock->sk;
	int err;
	long timeo;

	lock_sock(sk);

	if (uaddr->sa_family == AF_UNSPEC) {
		err = sk->sk_prot->disconnect(sk, flags);
		sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
		goto out;
	}

	switch (sock->state) {
	default:
		err = -EINVAL;
		goto out;
	case SS_CONNECTED:     /* 该BSD socket已连接*/
		err = -EISCONN;
		goto out;
	case SS_CONNECTING:   /* 该BSD socket正在连接*/
		err = -EALREADY;
		/* Fall out of switch with err, set for this state */
		break;
	case SS_UNCONNECTED:
		err = -EISCONN;
		if (sk->sk_state != TCP_CLOSE)
			goto out;
	        /* INET SOCKET 调用协议特有connect操作符 */
		err = sk->sk_prot->connect(sk, uaddr, addr_len);
		if (err < 0)
			goto out;
	        /* 上面的调用完成后,连接并没有完成,*/
		sock->state = SS_CONNECTING;

		/* Just entered SS_CONNECTING state; the only
		 * difference is that return value in non-blocking
		 * case is EINPROGRESS, rather than EALREADY.
		 */
		err = -EINPROGRESS;
		break;
	}
	/* 获取连接超时时间*/
	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);

	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
		/* Error code is set above 进入定时等待 */
		if (!timeo || !inet_wait_for_connect(sk, timeo))
			goto out;

		err = sock_intr_errno(timeo);
		if (signal_pending(current))
			goto out;
	}

	/* Connection was closed by RST, timeout, ICMP error
	 * or another process disconnected us.
	 */
	if (sk->sk_state == TCP_CLOSE)
		goto sock_error;

	/* sk->sk_err may be not zero now, if RECVERR was ordered by user
	 * and error was received after socket entered established state.
	 * Hence, it is handled normally after connect() return successfully.
	 */

	sock->state = SS_CONNECTED;
	err = 0;
out:
	release_sock(sk);
	return err;

sock_error:
	err = sock_error(sk) ? : -ECONNABORTED;
	sock->state = SS_UNCONNECTED;
	if (sk->sk_prot->disconnect(sk, flags))
		sock->state = SS_DISCONNECTING;
	goto out;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/* This will initiate an outgoing connection. */
int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
{
	struct inet_sock *inet = inet_sk(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
	struct rtable *rt;
	__be32 daddr, nexthop;
	int tmp;
	int err;

	if (addr_len < sizeof(struct sockaddr_in))
		return -EINVAL;

	if (usin->sin_family != AF_INET)
		return -EAFNOSUPPORT;
	/* 开始准备路由 */
	nexthop = daddr = usin->sin_addr.s_addr;
	if (inet->opt && inet->opt->srr) {
		if (!daddr)
			return -EINVAL;
		nexthop = inet->opt->faddr;
	}
	/* 调用路由模块获取出口信息,这里不深入 */
	tmp = ip_route_connect(&rt, nexthop, inet->saddr,
			       RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
			       IPPROTO_TCP,
			       inet->sport, usin->sin_port, sk, 1);
	if (tmp < 0) {
		if (tmp == -ENETUNREACH)
			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
		return tmp;
	}
	/* 如果获取的路由是广播或多播域, 返回网络不可达,tcp不支持多播与广播 */
	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
		ip_rt_put(rt);
		return -ENETUNREACH;
	}

	if (!inet->opt || !inet->opt->srr)
		daddr = rt->rt_dst;

	if (!inet->saddr)
		inet->saddr = rt->rt_src;
	inet->rcv_saddr = inet->saddr;

	if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
		/* Reset inherited state */
		tp->rx_opt.ts_recent      = 0;
		tp->rx_opt.ts_recent_stamp = 0;
		tp->write_seq         = 0;
	}

	if (tcp_death_row.sysctl_tw_recycle &&
	    !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
		struct inet_peer *peer = rt_get_peer(rt);
		/*
		 * VJ's idea. We save last timestamp seen from
		 * the destination in peer table, when entering state
		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
		 * when trying new connection.
		 */
		if (peer != NULL &&
		    peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
			tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
			tp->rx_opt.ts_recent = peer->tcp_ts;
		}
	}

	inet->dport = usin->sin_port;
	inet->daddr = daddr;

	inet_csk(sk)->icsk_ext_hdr_len = 0;
	if (inet->opt)
		inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
	/* mss_clamp */
	tp->rx_opt.mss_clamp = 536;

	/* Socket identity is still unknown (sport may be zero).
	 * However we set state to SYN-SENT and not releasing socket
	 * lock select source port, enter ourselves into the hash tables and
	 * complete initialization after this.
	 */
	tcp_set_state(sk, TCP_SYN_SENT);
	err = inet_hash_connect(&tcp_death_row, sk);
	if (err)
		goto failure;

	err = ip_route_newports(&rt, IPPROTO_TCP,
				inet->sport, inet->dport, sk);
	if (err)
		goto failure;

	/* OK, now commit destination to socket.  */
	sk->sk_gso_type = SKB_GSO_TCPV4;
	sk_setup_caps(sk, &rt->u.dst);

	if (!tp->write_seq)
		tp->write_seq = secure_tcp_sequence_number(inet->saddr,
							   inet->daddr,
							   inet->sport,
							   usin->sin_port);
	/* id是IP包头的id域 */
	inet->id = tp->write_seq ^ jiffies;

	err = tcp_connect(sk);
	rt = NULL;
	if (err)
		goto failure;

	return 0;

failure:
	/*
	 * This unhashes the socket and releases the local port,
	 * if necessary.
	 */
	tcp_set_state(sk, TCP_CLOSE);
	ip_rt_put(rt);
	sk->sk_route_caps = 0;
	inet->dport = 0;
	return err;
}

当snum==0时,表明此时源端口没有指定,此时会随机选择一个空闲端口作为此次连接的源端口。low和high分别表示可用端口的下限和上限,remaining表示可用端口的数,注意这里的可用只是指端口可以用作源端口,其中部分端口可能已经作为其它socket的端口号在使用了,所以要循环1~remaining,直到查找到空闲的源端口。

下面来看下对每个端口的检查,即//choose a valid port部分的代码。这里要先了解下tcp的内核表组成,udp的表内核表udptable只是一张hash表,tcp的表则稍复杂,它的名字是tcp_hashinfo,在tcp_init()中被初始化,这个数据结构定义如下(省略了不相关的数据):

1
2
3
4
5
6
7
8
struct inet_hashinfo {
	struct inet_ehash_bucket *ehash;
	……
	struct inet_bind_hashbucket *bhash;
	……
	struct inet_listen_hashbucket  listening_hash[INET_LHTABLE_SIZE]
					____cacheline_aligned_in_smp;
};

从定义可以看出,tcp表又分成了三张表ehash, bhash, listening_hash,其中ehash, listening_hash对应于socket处在TCP的ESTABLISHED, LISTEN状态,bhash对应于socket已绑定了本地地址。三者间并不互斥,如一个socket可同时在bhash和ehash中,由于TIME_WAIT是一个比较特殊的状态,所以ehash又分成了chain和twchain,为TIME_WAIT的socket单独形成一张表。

回到刚才的代码,现在还只是建立socket连接,使用的就应该是tcp表中的bhash。首先取得内核tcp表的bind表 – bhash,查看是否已有socket占用:

如果没有,则调用inet_bind_bucket_create()创建一个bind表项tb,并插入到bind表中,跳转至goto ok代码段; 如果有,则跳转至goto ok代码段。

进入ok代码段表明已找到合适的bind表项(无论是创建的还是查找到的),调用inet_bind_hash()赋值源端口inet_num。

inet_hash_connect()函数只是对__inet_hash_connect()函数进行了简单的封装。在__inet_hash_connect()中如果已绑定了端口号,并且是和其他传输控制块共享绑定的端口号,则会调用check_established参数指向的函数来检查这个绑定的端口号是否可用,代码如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
int __inet_hash_connect(struct inet_timewait_death_row *death_row,
		struct sock *sk, u32 port_offset,
		int (*check_established)(struct inet_timewait_death_row *,
		struct sock *, __u16, struct inet_timewait_sock **),
		void (*hash)(struct sock *sk))
{
	struct inet_hashinfo *hinfo = death_row->hashinfo;
	const unsigned short snum = inet_sk(sk)->num;
	struct inet_bind_hashbucket *head;
	struct inet_bind_bucket *tb;
	int ret;
	struct net *net = sock_net(sk);

	if (!snum) {
		int i, remaining, low, high, port;
		static u32 hint;
		u32 offset = hint + port_offset;
		struct hlist_node *node;
		struct inet_timewait_sock *tw = NULL;

		inet_get_local_port_range(&low, &high);
		remaining = (high - low) + 1;

		local_bh_enable();
		for (i = 1; i <= remaining; i++) {
			port = low + (i + offset) % remaining;
			if (inet_is_reserved_local_port(port)
				continue;
			head = &hinfo->bhash[inet_bhashfn(net, port, hinfo->bhash_size)];
			spin_lock(&head->lock);
			inet_bind_bucket_for_each(tb, node, &head->chain) {
				if (net_eq(ib_net(tb), net) && tb->port == port) {
					if (tb->fastreuse >= 0)
						goto next_port;
					WARN_ON(hlist_empty(&tb->owners));
					if (!check_established(death_row, sk, port, &tw))
						goto ok;
					goto next_port;
				}
			}

			tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net, head, port);
			if (!tb) {
				spin_unlock(&head->lock);
				break;
			}
			tb->fastreuse = -1;
			tb->fastreuseport = -1;
			goto ok;
		next_port:
			spin_unlock(&head->lock);
		}
		local_bh_enable();

		return -EADDRNOTAVAIL;

ok:
		hint += i;

		inet_bind_hash(sk, tb, port);
		if (sk_unhashed(sk)) {
			inet_sk(sk)->sport = htons(port);
			hash(sk);
		}
		spin_unlock(&head->lock);
		if (tw) {
			inet_twsk_deschedule(tw, death_row);
			inet_twsk_put(tw);
		}

		ret = 0;
		goto out;
	}

	head = &hinfo->bhash[inet_bhashfn(net, snum, hinfo->bhash_size)];
	tb  = inet_csk(sk)->icsk_bind_hash;
	spin_lock_bh(&head->lock);
	if (sk_head(&tb->owners) == sk && !sk->sk_bind_node.next) {
		hash(sk);
		spin_unlock_bh(&head->lock);
		return 0;
	} else {
		spin_unlock(&head->lock);
		/* No definite answer... Walk to established hash table */
		ret = check_established(death_row, sk, snum, NULL);
out:
		local_bh_enable();
		return ret;
	}
}

(sk_head(&tb->owners) == sk && !sk->sk_bind_node.next)这个判断条件就是用来判断是不是只有当前传输控制块在使用已绑定的端口,条件为false时,会执行else分支,检查是否可用。这么看来,调用bind()成功并不意味着这个端口就真的可以用。

check_established参数对应的函数是__inet_check_established(),在inet_hash_connect()中可以看到。在上面的代码中我们还注意到调用check_established()时第三个参数为NULL,这在后面的分析中会用到。

__inet_check_established()函数中,会分别在TIME_WAIT传输控制块和除TIME_WIAT、LISTEN状态外的传输控制块中查找是已绑定的端口是否已经使用,代码片段如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/* called with local bh disabled */
static int __inet_check_established(struct inet_timewait_death_row *death_row,
			struct sock *sk, __u16 lport,
			struct inet_timewait_sock **twp)
{
	struct inet_hashinfo *hinfo = death_row->hashinfo;
	struct inet_sock *inet = inet_sk(sk);
	__be32 daddr = inet->rcv_saddr;
	__be32 saddr = inet->daddr;
	int dif = sk->sk_bound_dev_if;
	INET_ADDR_COOKIE(acookie, saddr, daddr)
	const __portpair ports = INET_COMBINED_PORTS(inet->dport, lport);
	struct net *net = sock_net(sk);
	unsigned int hash = inet_ehashfn(net, daddr, lport, saddr, inet->dport);
	struct inet_ehash_bucket *head = inet_ehash_bucket(hinfo, hash);
	spinlock_t *lock = inet_ehash_lockp(hinfo, hash);
	struct sock *sk2;
	const struct hlist_nulls_node *node;
	struct inet_timewait_sock *tw;

	spin_lock(lock);

	/* Check TIME-WAIT sockets first. */
	sk_nulls_for_each(sk2, node, &head->twchain) {
		tw = inet_twsk(sk2);


		if (INET_TW_MATCH(sk2, net, hash, acookie,
				saddr, daddr, ports, dif)) {
			if (twsk_unique(sk, sk2, twp))
				goto unique;
			else
				goto not_unique;
		}
	}
	tw = NULL;

	/* And established part... */
	sk_nulls_for_each(sk2, node, &head->chain) {
		if (INET_MATCH(sk2, net, hash, acookie,
				saddr, daddr, ports, dif))
			goto not_unique;
	}

unique:
	......
	return 0;

not_unique:
	spin_unlock(lock);
	return -EADDRNOTAVAIL;
}

如果是TCP套接字,twsk_uniqueue()中会调用tcp_twsk_uniqueue()来判断,返回true的条件如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
{
	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
	struct tcp_sock *tp = tcp_sk(sk);

	if (tcptw->tw_ts_recent_stamp &&
			(twp == NULL || (sysctl_tcp_tw_reuse &&
			get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
		......
		return 1;
	}

	return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*
 * Build a SYN and send it off.
 */
int tcp_connect(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *buff;
	/* 初始化连接对应的INET socket结构的参数,为连接做准备 */
	tcp_connect_init(sk);
	/* 获取一个skb,由于是syn包,没有数据,所以大小是MAX_TCP_HEADER的16位对齐 */
	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
	if (unlikely(buff == NULL))
		return -ENOBUFS;

	/* Reserve space for headers. */
	skb_reserve(buff, MAX_TCP_HEADER);

	tp->snd_nxt = tp->write_seq;
	/* 设置skb相关参数 */
	tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN);
	/* 设置ECN */
	TCP_ECN_send_syn(sk, buff);

	/* Send it off. */
	/* 保存该数据包的发送时间*/
	TCP_SKB_CB(buff)->when = tcp_time_stamp;
	tp->retrans_stamp = TCP_SKB_CB(buff)->when;
	skb_header_release(buff);
	/* 加入发送队列,待确认后在丢弃*/
	__tcp_add_write_queue_tail(sk, buff);
	sk->sk_wmem_queued += buff->truesize;
	sk_mem_charge(sk, buff->truesize);
	tp->packets_out += tcp_skb_pcount(buff);
	tcp_transmit_skb(sk, buff, 1, GFP_KERNEL);

	/* We change tp->snd_nxt after the tcp_transmit_skb() call
	 * in order to make this packet get counted in tcpOutSegs.
	 */
	tp->snd_nxt = tp->write_seq;
	tp->pushed_seq = tp->write_seq;
	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);

	/* Timer for repeating the SYN until an answer. */
	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
	return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
 * Do all connect socket setups that can be done AF independent.
 */
static void tcp_connect_init(struct sock *sk)
{
	struct dst_entry *dst = __sk_dst_get(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	__u8 rcv_wscale;

	/* We'll fix this up when we get a response from the other end.
	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
	 */
	tp->tcp_header_len = sizeof(struct tcphdr) +
		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);

#ifdef CONFIG_TCP_MD5SIG
	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
#endif

	/* If user gave his TCP_MAXSEG, record it to clamp */
	if (tp->rx_opt.user_mss)
		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
	tp->max_window = 0;
	/* 初始化MTU probe*/
	tcp_mtup_init(sk);
	/* 设置mss */
	tcp_sync_mss(sk, dst_mtu(dst));

	if (!tp->window_clamp)
		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
	tp->advmss = dst_metric(dst, RTAX_ADVMSS);
	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
		tp->advmss = tp->rx_opt.user_mss;

	tcp_initialize_rcv_mss(sk);
	/* 根据接收空间大小初始化一个通告窗口 */
	tcp_select_initial_window(tcp_full_space(sk),
				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
				  &tp->rcv_wnd,
				  &tp->window_clamp,
				  sysctl_tcp_window_scaling,
				  &rcv_wscale);

	tp->rx_opt.rcv_wscale = rcv_wscale;
	tp->rcv_ssthresh = tp->rcv_wnd;

	sk->sk_err = 0;
	sock_reset_flag(sk, SOCK_DONE);
	tp->snd_wnd = 0;
	/* 更新一些滑动窗口的成员*/
	tcp_init_wl(tp, tp->write_seq, 0);
	tp->snd_una = tp->write_seq;
	tp->snd_sml = tp->write_seq;
	tp->snd_up = tp->write_seq;
	tp->rcv_nxt = 0;
	tp->rcv_wup = 0;
	tp->copied_seq = 0;

	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
	inet_csk(sk)->icsk_retransmits = 0;
	tcp_clear_retrans(tp);
}

skb发送后,connect并没有返回,因为此时连接还没有建立,tcp进入等待状态,此时回到前面的inet_stream_connect函数

在发送syn后进入等待状态

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
static long inet_wait_for_connect(struct sock *sk, long timeo)
{
	DEFINE_WAIT(wait);
	/* sk_sleep 保存此INET SOCKET的等待队列 */
	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);

	/* Basic assumption: if someone sets sk->sk_err, he _must_
	 * change state of the socket from TCP_SYN_*.
	 * Connect() does not allow to get error notifications
	 * without closing the socket.
	 */
	/* 定时等待知道状态变化 */
	while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
		release_sock(sk);
		timeo = schedule_timeout(timeo);
		lock_sock(sk);
		if (signal_pending(current) || !timeo)
			break;
		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
	}
	finish_wait(sk->sk_sleep, &wait);
	return timeo;
}