Programmer to Programmer™

Professional

Assembly
Language

Richard Blum

WIrox Updates, source code, and Wrox technical support at www.wrox.com

Professional Assembly Language

Richard Blum

Wiley Publishing, Inc.

Professional Assembly Language

Professional Assembly Language

Richard Blum

Wiley Publishing, Inc.

Professional Assembly Language

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana. All rights reserved.
Published simultaneously in Canada

ISBN: 0-7645-7901-0

Manufactured in the United States of America

10987654321

IMA/SW/QR/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail:
brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Blum, Richard. 1962-

Professional assembly language / Richard Blum.

p.-cm.

Includes index.

ISBN 0-7645-7901-0 (paper/website)
1. Assembly language (Computer program language) 1. Title.
QA76.73.A8B58 2005
005.13'6—dc22

2004029116

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

About the Author

Richard Blum has worked for a large U.S. government organization for more than 15 years. During that
time, he has had the opportunity to program utilities in various programming languages: C, C++, Java,
and Microsoft VB.NET and C#. With this experience, Rich has often found the benefit of reviewing
assembly language code generated by compilers and utilizing assembly language routines to speed up
higher-level language programs.

Rich has a bachelor of science degree in electrical engineering from Purdue University, where he worked
on many assembly language projects. (Of course, this was back in the eight-bit processor days.) He also
has a master of science degree in management from Purdue University, specializing in Management
Information Systems.

When Rich is not being a computer nerd, he is either playing electric bass for the church worship band
or spending time with his wife, Barbara, and two daughters, Katie Jane and Jessica.

Executive Editor
Chris Webb

Development Editor
Adaobi Obi Tulton

Production Editor
William A. Barton

Technical Editor
Paul Carter

Copy Editor
Luann Rouff

Editorial Manager
Kathryn Malm Bourgoine

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Credits

Project Coordinator
Erin Smith

Graphics and Production Specialists

Jonelle Burns
Amanda Carter
Carrie A. Foster
Lauren Goddard
Denny Hager
Joyce Haughey

Quality Control Technicians
David Faust

Susan Moritz

Carl William Pierce

Media Development Specialist
Angie Denny

Proofreading
TECHBOOKS Production Services

Indexing
Richard T. Evans

This book is dedicated to my wife, Barbara, and my daughters, Katie Jane
and Jessica. “Trust in the Lord with all your heart and lean not on your
own understanding; in all ways acknowledge him, and he will make your
paths straight.” Pr 3:5-6 (NIV)

Acknowledgments

First, all honor, glory, and praise go to God, who through His Son makes all things possible and gives us
the gift of eternal life.

Many thanks go to the great team of people at John Wiley & Sons Publishing. Thanks to Chris Webb, the
acquisitions editor, for offering me the opportunity to write this book. I am forever indebted to Adaobi
Obi Tulton, the development editor, for her work in making this book presentable and her overall guid-
ance through the book writing process. Also, many thanks go to Paul Carter, the technical editor of the
book. Paul’s comments throughout the book were invaluable in presenting the topic in the best way and
for pointing out my goofs and blunders. I would also like to thank Carole McClendon at Waterside
Productions, Inc., for arranging this opportunity for me, and for helping out in my writing career.

Finally, I would like to thank my parents, Mike and Joyce Blum, for their dedication and support while
raising me, and to my wife, Barbara, and daughters, Katie Jane and Jessica, for their love, patience, and
understanding, especially while I was writing this book.

Contents

Acknowledgments xi
Contents xiii
Introduction xxiii
Chapter 1: What Is Assembly Language? 1
Processor Instructions 1
Instruction code handling 2
Instruction code format 3
High-Level Languages 6
Types of high-level languages 7
High-level language features 9
Assembly Language 10
Opcode mnemonics 11
Defining data 12
Directives 14
Summary 15
Chapter 2: The 1A-32 Platform 17
Core Parts of an 1A-32 Processor 17
Control unit 19
Execution unit 24
Registers 25
Flags 29
Advanced IA-32 Features 32
The x87 floating-point unit 32
Multimedia extensions (MMX) 33
Streaming SIMD extensions (SSE) 33
Hyperthreading 34
The 1A-32 Processor Family 34
Intel processors 35
Non-Intel processors 36
Summary 37

Contents

Chapter 3: The Tools of the Trade 39
The Development Tools 39
The Assembler 40
The Linker 42
The Debugger 43
The Compiler 44
The object code disassembler 44
The Profiler 44
The GNU Assembler 45
Installing the assembler 45
Using the assembler 47

A word about opcode syntax 49
The GNU Linker 50
The GNU Compiler 53
Downloading and installing gcc 53
Using gcc 54
The GNU Debugger Program 56
Downloading and installing gdb 56
Using gdb 57
The KDE Debugger 60
Downloading and installing kdbg 60
Using kdbg 60
The GNU Objdump Program 62
Using objdump 63
An objdump example 64
The GNU Profiler Program 65
Using the profiler 65

A profile example 68

A Complete Assembly Development System 69
The basics of Linux 69
Downloading and running MEPIS 70
Your new development system 71
Summary 72
Chapter 4: A Sample Assembly Language Program 73
The Parts of a Program 73
Defining sections 74
Defining the starting point 74
Creating a Simple Program 75
The CPUID instruction 76
The sample program 77

Xiv

Contents

Building the executable 80
Running the executable 80
Assembling using a compiler 80
Debugging the Program 81
Using gdb 81
Using C Library Functions in Assembly 86
Using printf 87
Linking with C library functions 88
Summary 90
Chapter 5: Moving Data 91
Defining Data Elements 921
The data section 91
Defining static symbols 94
The bss section 95
Moving Data Elements 97
The MOV instruction formats 97
Moving immediate data to registers and memory 98
Moving data between registers 99
Moving data between memory and registers 99
Conditional Move Instructions 106
The CMOV instructions 107
Using CMOV instructions 109
Exchanging Data 110
The data exchange instructions 111
Using the data exchange instruction 116
The Stack 119
How the stack works 119
PUSHing and POPing data 120
PUSHing and POPing all the registers 123
Manually using the ESP and EBP registers 123
Optimizing Memory Access 123
Summary 124
Chapter 6: Controlling Execution Flow 127
The Instruction Pointer 127
Unconditional Branches 129
Jumps 129
Calls 132
Interrupts 135

XV

Contents

Conditional Branches
Conditional jump instructions
The compare instruction
Examples of using the flag bits

Loops
The loop instructions
A loop example
Preventing LOOP catastrophes

Duplicating High-Level Conditional Branches

if statements
for loops
Optimizing Branch Instructions
Branch prediction
Optimizing tips
Summary

Chapter 7: Using Numbers

136
136
138
140

144
144
145
145

146
147
150

153
153
155

158

161

Numeric Data Types
Integers
Standard integer sizes
Unsigned integers
Signed integers
Using signed integers
Extending integers
Defining integers in GAS
SIMD Integers
MMX integers
Moving MMX integers
SSE integers
Moving SSE integers
Binary Coded Decimal
What is BCD?
FPU BCD values
Moving BCD values
Floating-Point Numbers
What are floating-point numbers?
Standard floating-point data types
IA-32 floating-point values
Defining floating-point values in GAS
Moving floating-point values
Using preset floating-point values

XVi

161
162
162
164
166
168
169
172
173
173
174
176
177
178
178
179
180
182
182
184
186
187
187
189

Contents

SSE floating-point data types 190
Moving SSE floating-point values 191
Conversions 196
Conversion instructions 196

A conversion example 198
Summary 199
Chapter 8: Basic Math Functions 201
Integer Arithmetic 201
Addition 201
Subtraction 210
Incrementing and decrementing 215
Multiplication 216
Division 221
Shift Instructions 223
Multiply by shifting 224
Dividing by shifting 225
Rotating bits 226
Decimal Arithmetic 227
Unpacked BCD arithmetic 227
Packed BCD arithmetic 229
Logical Operations 231
Boolean logic 231
Bit testing 232
Summary 233
Chapter 9: Advanced Math Functions 235
The FPU Environment 235
The FPU register stack 236
The FPU status, control, and tag registers 237
Using the FPU stack 242
Basic Floating-Point Math 245
Advanced Floating-Point Math 249
Floating-point functions 249
Partial remainders 252
Trigonometric functions 254
Logarithmic functions 257
Floating-Point Conditional Branches 259
The FCOM instruction family 260
The FCOMI instruction family 262
The FCMOV instruction family 263

XVii

Contents

Saving and Restoring the FPU State
Saving and restoring the FPU environment
Saving and restoring the FPU state

Waiting versus Nonwaiting Instructions

Optimizing Floating-Point Calculations

Summary

Chapter 10: Working with Strings

265
265
266
269
270
270

273

Moving Strings
The MOVS instruction
The REP prefix
Other REP instructions
Storing and Loading Strings
The LODS instruction
The STOS instruction
Building your own string functions
Comparing Strings
The CMPS instruction
Using REP with CMPS
String inequality
Scanning Strings
The SCAS instruction
Scanning for multiple characters
Finding a string length
Summary

273
274
278
283
283
283
284
285
286
286
288
289
291
292
293
295
296

297

Chapter 11: Using Functions

Defining Functions

Assembly Functions
Writing functions
Accessing functions
Function placement
Using registers
Using global data

Passing Data Values in C Style
Revisiting the stack
Passing function parameters on the stack
Function prologue and epilogue
Defining local function data

xviii

297
299
299
302
304
304
304
306
306
306
308
309

Contents

Cleaning out the stack

An example

Watching the stack in action
Using Separate Function Files

Creating a separate function file

Creating the executable file

Debugging separate function files
Using Command-Line Parameters

The anatomy of a program

Analyzing the stack

Viewing command-line parameters

Viewing environment variables

An example using command-line parameters
Summary

Chapter 12: Using Linux System Calls

312
312
314
317
317
318
319
320
320
321
323
325
326
328

329

The Linux Kernel
Parts of the kernel
Linux kernel version
System Calls
Finding system calls
Finding system call definitions
Common system calls
Using System Calls
The system call format
Advanced System Call Return Values
The sysinfo system call
Using the return structure
Viewing the results
Tracing System Calls
The strace program
Advanced strace parameters
Watching program system calls
Attaching to a running program
System Calls versus C Libraries
The C libraries
Tracing C functions
Comparing system calls and C libraries
Summary

329
330
336
337
337
338
339
341
341
346
346
347
348
349
349
350
351
353
355
356
357
358
359

Xix

Contents

Chapter 13: Using Inline Assembly

361

What Is Inline Assembly?
Basic Inline Assembly Code
The asm format
Using global C variables
Using the volatile modifier
Using an alternate keyword
Extended ASM
Extended ASM format
Specifying input and output values
Using registers
Using placeholders
Referencing placeholders
Alternative placeholders
Changed registers list
Using memory locations
Using floating-point values
Handling jumps
Using Inline Assembly Code
What are macros?
C macro functions
Creating inline assembly macro functions
Summary

Chapter 14: Calling Assembly Libraries

361
365
365
367
369
369
370
370
370
372
373
376
377
377
379
380
382
384
384
384
386
387

389

Creating Assembly Functions
Compiling the C and Assembly Programs
Compiling assembly source code files
Using assembly object code files
The executable file
Using Assembly Functions in C Programs
Using integer return values
Using string return values
Using floating-point return values
Using multiple input values
Using mixed data type input values
Using Assembly Functions in C++ Programs
Creating Static Libraries
What is a static library?
The ar command

XX

389
391
392
392
393
395
396
397
400
401
403
407
408
408
409

Contents

Creating a static library file 410
Compiling with static libraries 412
Using Shared Libraries 412
What are shared libraries? 412
Creating a shared library 414
Compiling with a shared library 414
Running programs that use shared libraries 415
Debugging Assembly Functions 417
Debugging C programs 417
Debugging assembly functions 418
Summary 420
Chapter 15: Optimizing Routines 421
Optimized Compiler Code 421
Compiler optimization level 1 422
Compiler optimization level 2 423
Compiler optimization level 3 425
Creating Optimized Code 425
Generating the assembly language code 425
Viewing optimized code 429
Recompiling the optimized code 429
Optimization Tricks 430
Optimizing calculations 430
Optimizing variables 433
Optimizing loops 437
Optimizing conditional branches 442
Common subexpression elimination 447
Summary 450
Chapter 16: Using Files 453
The File-Handling Sequence 453
Opening and Closing Files 454
Access types 455
UNIX permissions 456
Open file code 458
Open error return codes 459
Closing files 460
Writing to Files 460
A simple write example 460
Changing file access modes 462
Handling file errors 462

XXi

Contents

Reading Files

A simple read example

A more complicated read example
Reading, Processing, and Writing Data
Memory-Mapped Files

What are memory-mapped files?

The mmap system call

mmap assembly language format

An mmap example
Summary

Chapter 17: Using Advanced IA-32 Features

463
464
465
467
470
470
471
473
475
479

481

A Brief Review of SIMD
MMX
SSE
SSE2
Detecting Supported SIMD Operations
Detecting support
SIMD feature program
Using MMX Instructions
Loading and retrieving packed integer values
Performing MMX operations
Using SSE Instructions
Moving data
Processing data
Using SSE2 Instructions
Moving data
Processing data
SSE3 Instructions
Summary

Index

xxii

481
482
483
483
483
484
485
487
487
488
497
498
499
504
505
505
508
508

511

Introduction

Assembly language is one of the most misunderstood programming languages in use. When the term
assembly language is used, it often invokes the idea of low-level bit shuffling and poring over thousand-
page instruction manuals looking for the proper instruction format. With the proliferation of fancy high-
level language development tools, it is not uncommon to see the phrase “assembly language
programming is dead” pop up among various programming newsgroups.

However, assembly language programming is far from dead. Every high-level language program must
be compiled into assembly language before it can be linked into an executable program. For the high-
level language programmer, understanding how the compiler generates the assembly language code can
be a great benefit, both for directly writing routines in assembly language and for understanding how
the high-level language routines are converted to assembly language by the compiler.

Who This Book Is For

The primary purpose of this book is to teach high-level language programmers how their programs are
converted to assembly language, and how the generated assembly language code can be tweaked. That
said, the main audience for this book is programmers already familiar with a high-level language, such
as C, C++, or even Java. This book does not spend much time teaching basic programming principles. It
assumes that you are already familiar with the basics of computer programming, and are interested in
learning assembly language to understand what is happening underneath the hood.

However, if you are new to programming and are looking at assembly language programming as a place
to start, this book does not totally ignore you. It is possible to follow along in the chapters from the start
to the finish and obtain a basic knowledge of how assembly language programming (and programming
in general) works. Each of the topics presented includes example code that demonstrates how the assem-
bly language instructions work. If you are completely new to programming, I recommend that you also
obtain a good introductory text to programming to round out your education on the topic.

What This Book Covers

The main purpose of this book is to familiarize C and C++ programmers with assembly language, show
how compilers create assembly language routines from C and C++ programs, and show how the gener-
ated assembly language routines can be spruced up to increase the performance of an application.

All high-level language programs (such as C and C++) are converted to assembly language by the com-
piler before being linked into an executable program. The compiler uses specific rules defined by the cre-
ator of the compiler to determine exactly how the high-level language statements are converted. Many
programmers just write their high-level language programs and assume the compiler is creating the
proper executable code to implement the program.

Introduction

However, this is not always the case. When the compiler converts the high-level language code state-
ments into assembly language code, quirks and oddities often pop up. In addition, the compiler is often
written to follow the conversion rules so specifically that it does not recognize time-saving shortcuts that
can be made in the final assembly language code, or it is unable to compensate for poorly written high-
level routines. This is where knowledge of assembly language code can come in handy.

This book shows that by examining the assembly language code generated by the compiler before link-
ing it into an executable program, you can often find places where the code can be modified to increase
performance or provide additional functionality. The book also helps you understand how your high-
level language routines are affected by the compiler’s conversion process.

How This Book Is Structured

The book is divided into three sections. The first section covers the basics of the assembly language
programming environment. Because assembly language programming differs among processors and
assemblers, a common platform had to be chosen. This book uses the popular Linux operating system,
running on the Intel family of processors. The Linux environment provides a wealth of program devel-
oper tools, such as an optimizing compiler, an assembler, a linker, and a debugger, all at little or no
charge. This wealth of development tools in the Linux environment makes it the perfect setting for
dissecting C programs into assembly language code.

The chapters in the first section are as follows:

Chapter 1, “What Is Assembly Language?” starts the section off by ensuring that you understand exactly
what assembly language is and how it fits into the programming model. It debunks some of the myths
of assembly language, and provides a basis for understanding how to use assembly language with high-
level languages.

Chapter 2, “The IA-32 Platform,” provides a brief introduction to the Intel Pentium family of processors.
When working with assembly language, it is important that you understand the underlying processor
and how it handles programs. While this chapter is not intended to be an in-depth analysis of the opera-
tion of the IA-32 platform, it does present the hardware and operations involved with programming for
that platform.

Chapter 3, “The Tools of the Trade,” presents the Linux open-source development tools that are used
throughout the book. The GNU compiler, assembler, linker, and debugger are used in the book for com-
piling, assembling, linking, and debugging the programs.

Chapter 4, “A Sample Assembly Language Program,” demonstrates how to use the GNU tools on a
Linux system to create, assemble, link, and debug a simple assembly language program. It also shows
how to use C library functions within assembly language programs on Linux systems to add extra fea-
tures to your assembly language applications.

The second section of the book dives into the basics of assembly language programming. Before you can

start to analyze the assembly language code generated by the compiler, you must understand the assem-
bly language instructions. The chapters in this section are as follows:

XXiv

Introduction

Chapter 5, “Moving Data,” shows how data elements are moved in assembly language programs. The
concepts of registers, memory locations, and the stack are presented, and examples are shown for mov-
ing data between them.

Chapter 6, “Controlling Execution Flow,” describes the branching instructions used in assembly lan-
guage programs. Possibly one of the most important features of programs, the ability to recognize
branches and optimize branches is crucial to increasing the performance of an application.

Chapter 7, “Using Numbers,” discusses how different number data types are used in assembly lan-
guage. Being able to properly handle integers and floating-point values is important within the assembly
language program.

Chapter 8, “Basic Math Functions,” shows how assembly language instructions are used to perform the
basic math functions such as addition, subtraction, multiplication, and division. While these are gener-
ally straightforward functions, subtle tricks can often be used to increase performance in this area.

Chapter 9, “Advanced Math Functions,” discusses the IA-32 Floating Point Unit (FPU), and how it is used
to handle complex floating-point arithmetic. Floating-point arithmetic is often a crucial element to data
processing programs, and knowing how it works greatly benefits high-level language programmers.

Chapter 10, “Working with Strings,” presents the various assembly language string-handling instruc-
tions. Character data is another important facet of high-level language programming. Understanding
how the assembly language level handles strings can provide insights when working with strings in
high-level languages.

Chapter 11, “Using Functions,” begins the journey into the depths of assembly language programming.
Creating assembly language functions to perform routines is at the core of assembly language optimiza-
tion. It is good to know the basics of assembly language functions, as they are often used by the compiler
when generating the assembly language code from high-level language code.

Chapter 12, “Using Linux System Calls,” completes this section by showing how many high-level func-
tions can be performed in assembly language using already created functions. The Linux system pro-
vides many high-level functions, such as writing to the display. Often, you can utilize these functions
within your assembly language program.

The last section of the book presents more advanced assembly language topics. Because the main topic of
this book is how to incorporate assembly language routines in your C or C++ code, the first few chapters
show just how this is done. The remaining chapters present some more advanced topics to round out
your education on assembly language programming. The chapters in this section include the following:

Chapter 13, “Using Inline Assembly,” shows how to incorporate assembly language routines directly in
your C or C++ language programs. Inline assembly language is often used for “hard-coding” quick rou-
tines in the C program to ensure that the compiler generates the appropriate assembly language code for
the routine.

Chapter 14, “Calling Assembly Libraries,” demonstrates how assembly language functions can be com-
bined into libraries that can be used in multiple applications (both assembly language and high-level
language). It is a great time-saving feature to be able to combine frequently used functions into a single
library that can be called by C or C++ programs.

XXV

Introduction

Chapter 15, “Optimizing Routines,” discusses the heart of this book: modifying compiler-generated
assembly language code to your taste. This chapter shows exactly how different types of C routines
(such as if-then statements and for-next loops) are produced in assembly language code. Once you
understand what the assembly language code is doing, you can add your own touches to it to customize
the code for your specific environment.

Chapter 16, “Using Files,” covers one of the most overlooked functions of assembly language program-
ming. Almost every application requires some type of file access on the system. Assembly language pro-
grams are no different. This chapter shows how to use the Linux file-handling system calls to read,
write, and modify data in files on the system.

Chapter 17, “Using Advanced IA-32 Features,” completes the book with a look at the advanced Intel
Single Instruction Multiple Data (SIMD) technology. This technology provides a platform for program-
mers to perform multiple arithmetic operations in a single instruction. This technology has become cru-
cial in the world of audio and video data processing.

What You Need to Use This Book

All of the examples in this book are coded to be assembled and run on the Linux operating system, run-
ning on an Intel processor platform. The Open Source GNU compiler (gcc), assembler (gas), linker (14),
and debugger (gdb) are used extensively throughout the book to demonstrate the assembly language
features. Chapter 4, “A Sample Assembly Language Program,” discusses specifically how to use these
tools on a Linux platform to create, assemble, link, and debug an assembly language program. If you do
not have an installed Linux platform available, Chapter 4 demonstrates how to use a Linux distribution
that can be booted directly from CD, without modifying the workstation hard drive. All of the GNU
development tools used in this book are available without installing Linux on the workstation.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q We highlight important words when we introduce them.
O We show filenames, URLs, and code within the text like so: persistence.properties.

QO We present code in two different ways:
In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

XXVi

Introduction

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox . com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-764-57901-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox. com/dynamic/books/download. aspx
to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox. com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We’ll check the information,
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

XXvii

Introduction

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1.
2.
3.

Go to p2p.wrox. com and click the Register link.
Read the terms of use and click Agree.

Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXViii

What Is
Assembly Language?

One of the first hurdles to learning assembly language programming is understanding just what
assembly language is. Unlike other programming languages, there is no one standard format that
all assemblers use. Different assemblers use different syntax for writing program statements.
Many beginning assembly language programmers get caught up in trying to figure out the myriad
of different possibilities in assembly language programming.

The first step in learning assembly language programming is defining just what type of assembly
language programming you want to (or need to) use in your environment. Once you define your
flavor of assembly language, it is easy to get started learning and using assembly language in both
standalone and high-level language programs.

This chapter begins the journey by showing where assembly language comes from, and defining
why assembly language programming is used. To understand assembly language programming,
you must first understand the basics of its underlying purpose — programming in processor
instruction code. Next, the chapter shows how high-level languages are converted to raw instruc-
tion code by compilers and linkers. After having that information, it will be easier for you to
understand how assembly language programs and high-level language programs differ, and how
they can both be used to complement one another.

Processor Instructions

At the lowest layer of operation, all computer processors (microcomputers, minicomputers, and
mainframe computers) manipulate data based on binary codes defined internally in the processor
chip by the manufacturer. These codes define what functions the processor should perform, utiliz-
ing the data provided by the programmer. These preset codes are referred to as instruction codes.
Different types of processors contain different types of instruction codes. Processor chips are often
categorized by the quantity and type of instruction codes they support.

Chapter 1

While the different types of processors can contain different types of instruction codes, they all handle
instruction code programs similarly. This section describes how processors handle instructions and what
the instruction codes look like for a sample processor chip.

Instruction code handling

As a computer processor chip runs, it reads instruction codes that are stored in memory. Each instruction
code set can contain one or more bytes of information that instruct the processor to perform a specific
task. As each instruction code is read from memory, any data required for the instruction code is also
stored and read in memory. The memory bytes that contain the instruction codes are no different than
the bytes that contain the data used by the processor.

To differentiate between data and instruction codes, special pointers are used to help the processor keep
track of where in memory the data and instruction codes are stored. This is shown in Figure 1-1.

68
54
40
49
OF

DO <«—— Data Pointer

—]

 c~—

08

EC

83 instructions move
upwards in memory

ES
89

55 <«— Instruction Pointer

Figure 1-1

The instruction pointer is used to help the processor keep track of which instruction codes have already
been processed and what code is next in line to be processed. Of course, there are special instruction
codes that can change the location of the instruction pointer, such as jumping to a specific location in the
program.

Similarly, a data pointer is used to help the processor keep track of where the data area in memory starts.
This area is called the stack. As new data elements are placed in the stack, the pointer moves “down” in
memory. As data is read from the stack, the pointer moves “up” in memory.

What Is Assembly Language?

Each instruction code can contain one or more bytes of information for the processor to handle. For
example, the instruction code bytes (in hexadecimal format)

C7 45 FC 01 00 00 00

tell an Intel IA-32 series processor to load the decimal value 1 into a memory offset location defined by
a processor register. The instruction code contains several pieces of information (defined later in the
“Opcode” section) that clearly define what function is to be performed by the processor. After the pro-
cessor completes processing one instruction code set, it reads the next one in memory (as pointed to by
the instruction pointer). The instructions must be placed in memory in the proper format and order for
the processor to properly step through the program code.

Every instruction must contain at least 1 byte called the operation code (or opcode for short). The opcode
defines what function the processor should perform. Each processor family has its own predefined
opcodes that define all of the functions available. The next section shows how the opcodes used in the
Intel IA-32 family of microprocessors are structured. These are the types of processor opcodes that are
used in all of the examples in this book.

Instruction code format

The Intel IA-32 family of microprocessors includes all of the current types of microprocessors used in
modern IBM-platform microcomputers (see Chapter 2, “The IA-32 Platform”), including the popular
Pentium line of microprocessors. A specific format for instruction codes is used in the IA-32 family of
microprocessors, and understanding the format of these instructions will help you in your assembly lan-
guage programming. The IA-32 instruction code format consists of four main parts:

Q Optional instruction prefix

Q Operational code (opcode)
Q Optional modifier
a

Optional data element

Figure 1-2 shows the layout of the IA-32 instruction code format.

/MOdiﬁers\
Instruction . Data
Prefixes Opcode ModR/M SIB Displacement Elements
0-4 1-3 0-1 0-1 0-4 0-4
bytes bytes bytes bytes bytes bytes
Figure 1-2

Chapter 1

Each of the parts is used to completely define a specific instruction for the processor to perform. The fol-
lowing sections describe each of the four parts of the instruction code and how they define the instruc-
tion performed by the processor.

The Intel Pentium processor family is not the only set of processor chips to utilize the IA-32 instruction
code format. The AMD corporation also produces a line of chips that are fully compatible with the Intel
IA-32 instruction code format.

Opcode

As shown in Figure 1-2, the only required part of the IA-32 instruction code format is the opcode. Each
instruction code must include an opcode that defines the basic function or task to be performed by the
processor.

The opcode is between 1 and 3 bytes in length, and uniquely defines the function that is performed. For
example, the 2-byte opcode OF A2 defines the IA-32 CPUID instruction. When the processor executes
this instruction code, it returns specific information about the microprocessor in different registers. The
programmer can then use additional instruction codes to extract the information from the processor reg-
isters to determine the type and model of microprocessor on which the program is running.

Registers are components within the processor chip that are used to temporarily store data while being
handled by the processor. They are covered in more detail in Chapter 2, “The IA-32 Platform.”

Instruction prefix

The instruction prefix can contain between one and four 1-byte prefixes that modify the opcode behav-
ior. These prefixes are categorized into four different groups, based on the prefix function. Only one pre-
fix from each group can be used at one time to modify the opcode (thus the maximum of four prefix
bytes). The four prefix groups are as follows:

QO Lock and repeat prefixes
Q Segment override and branch hint prefixes
Q Operand size override prefix
Q Address size override prefix
The lock prefix indicates that any shared memory areas will be used exclusively by the instruction. This

is important for multiprocessor and hyperthreaded systems. The repeat prefixes are used to indicate a
repeating function (usually used when handling strings).

The segment override prefixes define instructions that can override the defined segment register value
(described in more detail in Chapter 2). The branch hint prefixes attempt to give the processor a clue as
to the most likely path the program will take in a conditional jump statement (this is used with predic-
tive branching hardware).

The operand size override prefix informs the processor that the program will switch between 16-bit and
32-bit operand sizes within the instruction code. This enables the program to warn the processor when it
uses larger-sized operands, helping to speed up the assignment of data to registers.

What Is Assembly Language?

The address size override prefix informs the processor that the program will switch between 16-bit and
32-bit memory addresses. Either size can be declared as the default size for the program, and this prefix
informs the processor that the program is switching to the other.

Modifiers

Some opcodes require additional modifiers to define what registers or memory locations are involved in
the function. The modifiers are contained in three separate values:

Q addressing-form specifier (ModR/M) byte
Q Scale-Index-Base (SIB) byte

Q One, two, or four address displacement bytes

The ModR/M byte

The ModR /M byte consists of three fields of information, as shown in Figure 1-3.

7 6 5 32 0
Mod reg/opcode r/m
2 bits 3 bits 3 bits

Figure 1-3

The mod field is used with the r/m field to define the register or addressing mode used in the instruc-
tion. There are 24 possible addressing modes, along with eight possible general-purpose registers that
can be used in the instruction, making 32 possible values.

The reg/opcode field is used to enable three more bits to further define the opcode function (such as
opcode subfunctions), or it can be used to define a register value.

The r/m field is used to define another register to use as the operand of the function, or it can be com-
bined with the mod field to define the addressing mode for the instruction.

The SIB byte

The SIB byte also consists of three fields of information, as shown in Figure 1-4.

7 6 5 32 0
scale index base
2 bits 3 bits 3 bits

Figure 1-4

Chapter 1

The scale field specifies the scale factor for the operation. The index field specifies the register that is
used as the index register for memory access. The base field specifies the register that is used as the base
register for memory access.

The combination of the ModR/M and SIB bytes creates a table that can define many possible combina-
tions of registers and memory modes for accessing data. The Intel specification sheets for the Pentium
processor define all of the possible combinations that are used with the ModR/M and SIB bytes.

The address displacement byte

The address displacement byte is used to indicate an offset to the memory location defined in the
ModR/M and SIB bytes. This can be used as an index to a base memory location to either store or access
data within memory.

Data element

The final part of the instruction code is the data element that is used by the function. While some instruc-
tion codes read data from memory locations or processor registers, some include data within the instruc-
tion code itself. Often this value is used to represent a static numeric value, such as a number to be added,
or a memory location. This value can contain 1, 2, or 4 bytes of information, depending on the data size.

For example, the following sample instruction code shown earlier:

C7 45 FC 01 00 00 00

defines the opcode C7, which is the instruction to move a value to a memory location. The memory loca-
tion is defined by the 45 FC modifier (which defines —4 bytes (the FC value) from the memory location
pointed to by the value in the EBP register (the 45 value). The final 4 bytes define the integer value that is
placed in that memory location (in this case, the value 1).

As you can see from this example, the value 1 was written as the 4-byte hexadecimal value 01 00 00 00.
The order of the bytes in the data stream depends on the type of processor used. The IA-32 platform pro-
cessors use “little-endian” notation, whereby the lower-value bytes appear first in order (when reading
left to right). Other processors use “big-endian” order, whereby the higher-value bytes appear first in
order. This concept is extremely important when specifying data and memory location values in your
assembly language programs.

High-Level Languages

If it looks like programming in pure processor instruction code is difficult, it is. Even the simplest of pro-
grams require the programmer to specify a lot of opcodes and data bytes. Trying to manage a huge pro-
gram full of just instruction codes would be a daunting task. To help save the sanity of programmers,
high-level languages (HLLs) were created.

HLLs enable programmers to create functions using simpler terms, rather than raw processor instruction
codes. Special reserved keywords are used to define variables (memory locations for data), create

loops (jump over instruction codes), and handle input and output from the program. However, the pro-
cessor does not have any knowledge about how to handle the HLL code. The code must be converted by
some mechanism to simple instruction code format for the processor to handle. This section defines the

What Is Assembly Language?

different types of HLLs and then shows how the HLL code is converted to the instruction code for the
processor to execute.

Types of high-level languages
While programmers can choose from many different HLLs available, they all can be classified into two
different categories, based on how they are run on the computer:
Q Compiled languages
Q Interpreted languages
While it is possible for different implementations of the same programming language to be either com-
piled or interpreted, these categories are used to show how a particular HLL implementation defines

how the programs are run on the processor. The following sections describe the methods used to run
programs and show how they affect how the processor operates with them.

Compiled languages

Most production applications are created using compiled HLLs. The programmer creates a program
using common statements for the language which carry out the logic of the application. The text pro-
gram statements are then converted into a set of instruction codes that can be run on the processor.
Usually, what is commonly called compiling a program is actually a two-step process:

Q Compiling the HLL statements into raw instruction codes

Q Linking the raw instruction codes to produce an executable program

Figure 1-5 demonstrates this process.

Ej —_—> Compiler \
source code Ej
file
object code

file
Linker e
other executable
object code file
files

object code
libraries

Figure 1-5

Chapter 1

The compiling step converts the text programming language statements into the instruction codes
required to carry out the application function. Each of the HLL lines of code are matched up with one or
more instruction codes pertaining to the specific processor on which the application will run. For exam-
ple, the simple HLL code

int main()

{
int 1 = 1;
exit (0);

}

is compiled into the following IA-32 instruction codes:

55

89 E5

83 EC 08

C7 45 FC 01 00 00 00
83 EC 0OC

6A 00

E8 D1 FE FF FF

This step produces an intermediate file, called an object code file. The object code file contains the instruc-
tion codes that represent the core of the application functions, as shown above. The object code file itself
cannot be run by the operating system. Often the host operating system requires special file formats for
executable files (program files that can be run on the system), and the HLL program may require pro-
gram functions from other object files. Another step is required to add these components.

After the code is compiled into an object file, a linker is used to link the application object code file with
any additional object files required by the application and to create the final executable output file. The
output of the linker is an executable file that can only be run on the operating system for which the pro-
gram is written. Unfortunately, each operating system uses a different format for executable files, so an
application compiled on a Microsoft Windows workstation will not work as is on a Linux workstation,
and vice versa.

Object files that contain commonly used functions can be combined into a single file, called a library
file. The library file can then be linked into multiple applications either at compile time (called static
libraries), or at the time the application is run on the system (called dynamic libraries).

Interpreted languages

As opposed to compiled programs, which run by themselves on a processor, an interpreted language
program is read and run by a separate program. The separate program is a host for the application pro-
gram, reading and interpreting the program as it is processed. It is the job of the host program to convert
the interpreted program code into the proper instruction codes for the processor as the program is
running.

Obviously, the downside to using interpreted languages is speed. Instead of the program being com-
piled directly to instruction codes that are run on the processor, an intermediary program reads each line
of program code and processes the required functions. The amount of time the host program takes to
read the code and execute it adds additional delays to the execution of the application.

What Is Assembly Language?

With the resulting reduction in speed when using interpreted languages, you may be wondering why
anyone still uses them. One answer is convenience. With compiled programs, every time a change is
made to the program, the program must be recompiled and relinked with the proper code libraries. With
interpreted programs, changes can be quickly made to the source code file and the program rerun to
check for errors. In addition, with interpreted languages, the interpreter application automatically deter-
mines what functions need to be included with the core code to support functions.

Today'’s programming language environment muddies the waters between compiled and interpreted lan-
guages. No one specific language can be classified in either category. Instead, individual implementa-
tions of different HLLs are categorized. For example, while many BASIC programming
implementations require interpreters to interpret the BASIC code into an executable program, there are
many BASIC implementations that enable the programmer to compile the BASIC programs into exe-
cutable instruction code.

Hybrid languages

Hybrid languages are a recent trend in programming that combine the features of a compiled program
with the versatility and ease of an interpreted program. A perfect example is the popular Java program-
ming language.

The Java programming language is compiled into what is called byte code. The byte code is similar to
the instruction code you would see on a processor, but is itself not compatible with any current proces-
sor family (although there have been plans to create a processor that can run Java byte code as instruc-
tion sets).

Instead, the Java byte code must be interpreted by a Java Virtual Machine (JVM), running separately on
the host computer. The Java byte code is portable, in that it can be run by any JVM on any type of host
computer. The advantage is that different platforms can have their own specific JVMs, which are used to
interpret the same Java byte code without it having to be recompiled from the original source code.

High-level language features

If you are a professional programmer, most likely you do most (if not all) of your coding using a high-
level language. You may or may not have had the luxury of choosing which HLL you use for your pro-
jects, but either way, there is no doubt that it makes your job easier. This section describes two of the
most useful features of HLLs, portability and standardization, which help set HLLs apart from assembly
language programming.

Portability

As described earlier in the “Processor Instructions” section, instruction code programming is highly
dependent on the processor used in the computer. Each of the different families of processors utilize
different instruction code formats, as well as different methods for storing data (big endian vs. little
endian). Instruction codes written for an IA-32 platform will not work on a MIPS processor platform.

Imagine writing a 10,000-line instruction code program for your new application, which runs on a Sun
Sparc workstation, and then being asked to port it to a Linux workstation running on a Pentium com-
puter. Because the microprocessor used for the Sun Sparc workstation does not use the same instruction
codes as the Pentium, all of your code would need to be redone for the new instruction codes — ouch.

Chapter 1

HLLs have the capability to be ported to other operating systems and other processor platforms by sim-
ply recompiling the program on the new platform. When the program is recompiled, it is automatically
rewritten using the instruction codes for the destination processor.

However, in practice, nontrivial programs use operating system APIs that make it difficult to simply
recompile the source code for another platform. For example, a program directly using the MS Windows
API will not compile under Linux.

Standardization

Another useful feature of HLLs is the abundance of standards available for the languages. Both the
Institute of Electrical and Electronics Engineers (IEEE) and the American National Standards Institute
(ANSI) have created standard specifications for many different HLLs.

This means that you are guaranteed to obtain the same results from source code compiled with a stan-
dard compiler on one type of operating system and processor as you would compiling on a different
type of operating system and processor. Each compiler is created to interpret the standard language con-
structs into instruction code for the destination processor to produce the same functionality across the
processor platforms.

Assembly Language

10

While creating large applications using an HLL is often simpler than using raw instruction codes, it
doesn’t necessarily mean that the resulting program will be efficient. Unfortunately, in order to increase
portability and comply with standards, many compilers code to the “least common denominator.” This
means that compilers creating instruction codes for advanced processor chips may not utilize special
instruction codes unique to those processors to help create faster applications.

One feature that many of the new processors on the market offer is advanced mathematics handling
instruction codes. These instruction codes help speed up complex mathematical expression processing
by using larger-than-normal byte sizes to represent numbers (either 64 or 128 bits). Unfortunately, many
compilers don’t take advantage of these advanced instruction codes. Fortunately, there is a simple solu-
tion for the programmer. In environments where execution speed is critical, assembly language pro-
gramming can come to the rescue. Of course, the first step to improving execution speed is to ensure that
the best algorithm is used in the first place. Optimizing a poor algorithm does not compensate for using
a fast algorithm in the first place.

Assembly language enables programmers to directly create instruction code programs without having to
worry about the many different instruction code set combinations on the processor. Instead, an assembly
language program uses mnemonics to represent instruction codes. The mnemonics enables the program-
mer to use English-style words to represent individual instruction codes. The assembly language
mnemonics are easily converted to the raw instruction codes by an assembler.

This section describes the assembly language mnemonic system, and how it is used to create raw
instruction code programs that can be run on the processor.

What Is Assembly Language?

An assembly language program consists of three components that are used to define the program
operations:

Q0 Opcode mnemonics
(] Data sections

d Directives

The following sections describe each of these components and show how they are used within the
assembly language program to create the resulting instruction code program.

Opcode mnemonics

The core of an assembly language program is the instruction codes used to create the program. To help
facilitate writing the instruction codes, assemblers equate mnemonic words with instruction code func-
tions, such as moving or adding data elements. For example, the instruction code sample

55

89 Eb5

83 EC 08

C7 45 FC 01 00 00 00
83 EC 0C

6A 00

E8 D1 FE FF FF

can be written in assembly language as follows:

push %ebp

mov %esp, %ebp
sub $0x8, %esp
movl $0x1, -4 (%ebp)
sub $0xc, %esp
push $0x0

call 8048348

Instead of having to know what each byte of instruction code represents, the assembly language pro-
grammer can use easier-to-remember mnemonic codes, such as push, mov, sub, and call, to represent
the instruction codes.

Different assemblers use different mnemonics to represent instruction codes. While trends have
emerged to standardize assembler mnemonics, there is still quite a vast variety of mnemonic codes, not
only between processor families but even between assemblers used for the same processor instruction
code sets.

Each processor manufacturer publishes developer manuals detailing all of the instruction codes imple-
mented by a specific chip set. The Intel IA-32 developer manuals are freely available at the Intel Web
site (www.intel.com). These developer manuals take over 1,000 pages just to enumerate and describe all
of the instruction codes for the Pentium family of processors.

11

Chapter 1

Defining data

Besides the instruction codes, most programs also require data elements to be used to hold variable and
constant data values that are used throughout the program. HLLs use variables to define sections of
memory to hold data. For example, it is not uncommon to see the following in an HLL program:

long testvalue = 150;
char message[22] = {"This is a test message"};
float pi = 3.14159;

Each of these statements is interpreted by the HLL compiler to reserve memory locations of a specific
number of bytes to store values that may or may not change during the course of the program. Each time
the program references the variable name (such as testvalue), the compiler knows to access the speci-
fied location in memory to read or change the byte values.

Assembly language also enables the programmer to define data items that will be stored in memory.
One of the advantages of programming in assembly language is that it provides you with greater control
over where and how your data is stored in memory. The following sections describe two methods used
to store and retrieve data in assembly language.

Using memory locations

12

Similar to the HLL method of defining data, assembly language enables you to declare a variable that
points to a specific location in memory. Defining variables in assembly language consists of two parts:

1. Alabel that points to a memory location

2. Adata type and default value for the memory bytes

The data type determines how many bytes are reserved for the variable. In an assembly language pro-
gram, this would look like the following:

testvalue:

.long 150
message:

.ascii "This is a test message"
pi:

.float 3.14159

As you can see from the data types, assembly language allows you to declare the type of data stored in
the memory location, along with the default values placed in the memory location, similar to most HLL
methods. Each data type occupies a specific number of bytes, starting at the memory location reserved
for the label. This is shown in Figure 1-6.

What Is Assembly Language?

40)
49
OF
DO pi
61

NN —
/k/—'\/_/\,-\

73
69
68

54 message
00
00
00

96 testvalue

Figure 1-6

The first data element declared, testvalue, is placed in memory as a 4-byte hexadecimal value in little-
endian order (96 00 00 00). The next data element, message, is placed immediately after the last byte of
the testvalue data element. Because the message data element is a text value, it is placed in memory
in the order the text characters appear in the string. Finally, the last data element, pi, is placed in mem-
ory immediately after the last byte of the message data element (the floating point is discussed in great
detail in Chapter 7, “Using Numbers.”

The memory locations are referenced within the assembly language program based on the label used to
define the starting location. A sample assembly language program would look like the following:

movl testvalue, %ebx
addl $10, %ebx
movl %ebx, testvalue

The first instruction loads the EBX register with the 4-byte value located at the memory location pointed
to by the testvalue label (which was defined with a value of 150). The next instruction adds 10 (in deci-
mal) to the value stored in the EBX register and puts the result back in the EBX register. Finally, the reg-
ister value is stored in the memory location referenced by the testvalue label. This new value can then
be referenced again in the program using the testvalue label, and it will have the value of 160 (this
process is explained in detail in Chapter 5, “Moving Data,” and Chapter 8, “Basic Math Functions”).

13

Chapter 1

Using the stack

Another method used to store and retrieve data in assembly language is called the stack. The stack is a
special memory area usually reserved for passing data elements between functions in the program. It
can also be used for temporarily storing and retrieving data elements.

The stack is a region of memory reserved at the end of the memory range that the computer reserves for
the application. A pointer (called the stack pointer) is used to point to the next memory location in the
stack to put or take data. Much like a stack of papers, when a data element is placed in the stack, it
becomes the first item that can be removed from the stack (assuming you can only take papers off of the
top of the paper stack).

When calling functions in an assembly language program, you usually place any data elements that you
want passed to the function on the top of the stack. When the function is called, it can retrieve the data
elements from the stack.

The different methods of storing and retrieving data are discussed in greater detail in Chapter 5,
“Moving Data.”

Directives

Instructions and data are not the only elements that make up an assembly language program.
Assemblers reserve special keywords for instructing the assembler how to perform special functions as
the mnemonics are converted to instruction codes.

You saw an example of directives in the previous section when the data elements were defined. The data
types were declared using assembler directives used in the GNU assembler. The .long, .ascii, and
.float directives are used to alert the assembler that a specific type of data is being declared. As shown
in the example, directives are preceded by a period to set them apart from labels.

Directives are another area in which the different assemblers vary. Many different directives are used to
help make the programmer’s job of creating instruction codes easier. Some modern assemblers have lists
of directives that can rival many HLL features, such as while loops, and if-then statements! The older,
more traditional assemblers, however, keep the directives to a minimum, forcing the assembly language
programmer to use the mnemonic codes to create the program logic.

One of the most important directives used in the assembly language program is the . section directive.
This directive defines the section of memory in which the assembly language program is defining ele-
ments. All assembly language programs have at least three sections that must be declared:

0 Adata section
Q Abss section
O Atextsection
The data section is used to declare the memory region where data elements are stored for the program.

This section cannot be expanded after the data elements are declared, and it remains static throughout
the program.

14

What Is Assembly Language?

The bss section is also a static memory section. It contains buffers for data to be declared later in the pro-
gram. What makes this section special is that the buffer memory area is zero-filled.

The text section is the area in memory where the instruction code is stored. Again, this area is fixed, in
that it contains only the instruction codes that are declared in the assembly language program.

These directives used in an assembly language program are demonstrated in Chapter 4, “A Sample
Assembly Language Program.”

Summary

While assembly language programming is often referred to as a single programming language category,
in reality there are a wide variety of different types of assembly language assemblers. Each assembler
uses slightly different formats to represent instruction codes, data, and special directives for assembling
the final program. The first step to programming in assembly language is deciding which assembler you
need to use, and what format it uses.

The purpose of using assembly language is to code as closely to raw processor code as possible. The
code recognized by the processor is called instruction code. Each processor family has its own set of
instruction codes that define the functions the processor can perform. Each processor family also uses
specific formats for the instruction code. The Intel IA-32 family of processors uses a format that consists
of four parts. An opcode is used to define which processor instruction should be used. An optional pre-
fix may be used to modify the behavior of the instruction. An optional modifier may also be used to
define what registers or memory locations are used in the instruction. Finally, an optional data element
may be included, which defines specific data values used in the instruction.

Trying to create large-scale programs using raw instruction codes is not an easy task. Each instruction
code must be programmed byte by byte in the proper order for the application to run. Instead of forcing
programmers to learn all of the instruction codes, developers have created high-level languages, which
enable programmers to create programs in a shorthand method, which is then converted into the proper
instruction codes by a compiler. High-level languages use simple keywords and terms to define one or
more instruction codes. This enables programmers to concentrate on the logic of the application pro-
gram, rather than worry about the details of the underlying processor instruction codes.

The downside of using high-level languages is that the programmer is dependant on the compiler cre-
ator to convert programming logic to the instruction code run by the processor. There is no guarantee
that the created instruction codes will be the most efficient method of programming the logic. For pro-
grammers who want maximum efficiency, or the capability to have greater control over how the pro-
gram is handled by the processor, assembly language programming offers an alternative.

Assembly language programming enables the programmer to program with instruction codes, but by
using simple mnemonic terms to refer to those instruction codes. This provides programmers with both

the ease of a high-level language and the control offered by using instruction codes.

Unfortunately, assembly language assemblers are not standardized, and there are many different forms
of assembly language. All assemblers contain three elements: opcode mnemonics, data elements, and

15

Chapter 1

directives. The opcode mnemonics are used to code the programming logic, and data elements are used
to define memory locations to hold both constant and variable data elements. Directives are one of the
most controversial elements of assemblers. Directives help the programmer define specific functions,
such as declaring data types, and define memory regions within the program. Some assemblers take
directives to a higher level, providing directives that support many high-level language functions, such
as advanced data management and logic programming.

The next chapter discusses the specific layout of the Intel IA-32 processor family. Before you can start
programming for the Pentium family of processors, it is important to understand how the hardware is
laid out. Knowing how the processor handles data will enable you to program more efficiently, increas-
ing the speed of your applications.

16

|

The 1A-32 Platform

One key to successful assembly language programming is knowing the environment you are
programming for. The biggest part of that environment is the processor. Knowing the hardware
platform your program will run on is crucial to being able to exploit both basic and advanced
functions of the processor. Often, the whole point of using assembly language is to exploit low-
level features of the processor within your application program. Knowing what elements can be
used to assist your programs in gaining the most speed possible can mean the difference between
a fast application and a slow application.

At the time of this writing, the most popular processor platform by far used in workstations and
servers is the Intel Pentium family of processors. The hardware and instruction code set designed
for the Pentium processors is commonly referred to as the IA-32 platform.

This chapter describes the hardware elements that make up the Intel IA-32 platform. The first part
of the chapter describes the basic components found in the IA-32 processor platforms. Then the
chapter describes the advanced features found in the newer Pentium 4 processor chips in the IA-32
family. Finally, the different processors that are contained within the IA-32 platform are discussed,
showing what features to watch out for with the different types of processors, both from Intel and
from other manufacturers.

Core Parts of an I1A-32 Processor

While different processor families incorporate different instruction sets and capabilities, there is a
core set of components that can be found on most processors. Most introductory computer science
classes teach four basic components of a computer. Figure 2-1 shows a basic block diagram of
these core components.

Chapter 2

18

Processor System Input Output
Memory Devices Devices

control bus

address bus

data bus

Figure 2-1

The processor contains the hardware and instruction codes that control the operation of the computer. It
is connected to the other elements of the computer (the memory storage unit, input devices, and output
devices) using three separate buses: a control bus, an address bus, and a data bus.

The control bus is used to synchronize the functions between the processor and the individual system

elements. The data bus is used to move data between the processor and the external system elements.

An example of this would be reading data from a memory location. The processor places the memory

address to read on the address bus, and the memory storage unit responds by placing the value stored
in that memory location on the data bus for the processor to access.

The processor itself consists of many components. Each component has a separate function in the pro-
cessor’s ability to process data. Assembly language programs have the ability to access and control each
of these elements, so it is important to know what they are. The main components in the processor are
as follows:

Q Control unit

0O Execution unit

O Registers

Q Flags

Figure 2-2 shows these components and how they interact within the processor.

< Registers
Control Execution
Unit Unit
< Flags
Figure 2-2

The IA-32 Platform

The following sections describe each of the core components, and how they are implemented in the
IA-32 platform.

Control unit

At the heart of the processor is the control unit. The main purpose of the control unit is to control what
is happening at any time within the processor. While the processor is running, instructions must be
retrieved from memory and loaded for the processor to handle. The job of the control unit is to perform
four basic functions:

1. Retrieve instructions from memory.

2. Decode instructions for operation.

3. Retrieve data from memory as needed.

4. Store the results as necessary.
The instruction counter retrieves the next instruction code from memory and prepares it to be processed.
The instruction decoder is used to decode the retrieved instruction code into a micro-operation. The

micro-operation is the code that controls the specific signals within the processor chip to perform the
function of the instruction code.

When the prepared micro-operation is ready, the control unit passes it along to the execution unit for
processing, and retrieves any results to store in an appropriate location.

The control unit is the most hotly researched part of the processor. Many advances in microprocessor
technology fall within the control unit section. Intel has made numerous advancements in speeding up
the operations within the control unit. One of the most beneficial advancements is the manner in which
instructions are retrieved and processed by the control unit.

At the time of this writing, the latest Intel processor (the Pentium 4) uses a control unit technology called
NetBurst. The NetBurst technology incorporates four separate techniques to help speed up processing in
the control unit. Knowing how these techniques operate can help you optimize your assembly language
programs. The NetBurst features are as follows:

Q Instruction prefetch and decoding

Q Branch prediction

Q Out-of-order execution

O Retirement

These techniques work together to make the control unit of the Pentium 4 processor. Figure 2-3 shows
how these elements interact.

19

Chapter 2

System
Memory

Execution Unit
K /

) Out-of-Order .
Instruction . Retirement
Prefetch & Decoder > Execution ” Unit
Engine
A
Branch Prediction <
Control Unit

Figure 2-3

The following sections describe each of these techniques as implemented in the Pentium 4 processor.

Instruction prefetch and decoding pipeline

Older processors in the IA-32 family fetched instructions and data directly from system memory as they
were needed by the execution unit. Because it takes considerably longer to retrieve data from memory
than to process it, a backlog occurs, whereby the processor is continually waiting for instructions and
data to be retrieved from memory. To solve this problem, the concept of prefetching was created.

Although the name sounds odd, prefetching involves attempting to retrieve (fetch) instructions and/or
data before they are actually needed by the execution unit. To incorporate prefetching, a special storage
area is needed on the processor chip itself —one that can be easily accessed by the processor, quicker
than normal memory access. This was solved using pipelining.

Pipelining involves creating a memory cache on the processor chip from which both instructions and
data elements can be retrieved and stored ahead of the time that they are required for processing. When
the execution unit is ready for the next instruction, that instruction is already available in the cache and
can be quickly processed. This is demonstrated in Figure 2-4.

20

The IA-32 Platform

System Memory

L2 Execution cache

Decoder
Out-of-Order
= L1 Execution cache > Execution
Engine

Instruction Prefetch & Decoder

A

Branch Prediction

Figure 2-4

The IA-32 platform implements pipelining by utilizing two (or more) layers of cache. The first cache
layer (called L1) attempts to prefetch both instruction code and data from memory as it thinks it will
be needed by the processor. As the instruction pointer moves along in memory, the prefetch algorithm
determines which instruction codes should be read and placed in the cache. In a similar manner, if data
is being processed from memory, the prefetch algorithm attempts to determine what data elements
may be accessed next and also reads them from memory and places them in cache.

Of course, one pitfall to caching instructions and data is that there is no guarantee that the program will
execute instructions in a sequential order. If the program takes a logic branch that moves the instruction
pointer to a completely different location in memory, the entire cache is useless and must be cleared and
repopulated with instructions from the new location.

To help alleviate this problem, a second cache layer was created. The second cache layer (called L2) can
also hold instruction code and data elements, separate from the first cache layer. When the program
logic jumps to a completely different area in memory to execute instructions, the second layer cache can
still hold instructions from the previous instruction location. If the program logic jumps back to the area,
those instructions are still being cached and can be processed almost as quickly as instructions stored in
the first layer cache.

21

Chapter 2

While assembly language programs cannot access the instruction and data caches, it is good to know
how these elements work. By minimizing branches in programs, you can help speed up the execution of
the instruction codes in your program.

Branch prediction unit

While implementing multiple layers of cache is one way to help speed up processing of program logic, it
still does not solve the problem of “jumpy” programs. If a program takes many different logic branches,
it may well be impossible for the different layers of cache to keep up, resulting in more last-minute
memory access for both instruction code and data elements.

To help solve this problem, the IA-32 platform processors also incorporate branch prediction. Branch pre-
diction uses specialized algorithms to attempt to predict which instruction codes will be needed next
within a program branch.

Special statistical algorithms and analysis are incorporated to determine the most likely path traveled
through the instruction code. Instruction codes along that path are prefetched and loaded into the cache
layers.

The Pentium 4 processor utilizes three techniques to implement branch prediction:

Q Deep branch prediction
QO Dynamic data flow analysis

O Speculative execution

Deep branch prediction enables the processor to attempt to decode instructions beyond multiple
branches in the program. Again, statistical algorithms are implemented to predict the most likely path
the program will take throughout the branches. While this technique is helpful, it is not totally foolproof.

Dynamic data flow analysis performs statistical real-time analysis of the data flow throughout the pro-
cessor. Instructions that are predicted to be necessary for the flow of the program but not reached yet by
the instruction pointer are passed to the out-of-order execution core (described next). In addition, any
instructions that can be executed while the processor is waiting for data related to another instruction
are processed.

Speculative execution enables the processor to determine what distant instruction codes not immedi-
ately in the instruction code branch are likely to be required, and attempt to process those instructions,
again using the out-of-order execution engine.

Out-of-order execution engine

22

The out-of-order execution engine is one of the greatest improvements to the Pentium 4 processor in
terms of speed. This is where instructions are prepared for processing by the execution unit. It contains
several buffers to change the order of instructions within the pipeline to increase the performance of the
control unit. This is demonstrated in Figure 2-5.

The IA-32 Platform

Instruction
Prefetch & Decoder

Execution

/ Unit

Allocator Register ,| Micro-operation
Renaming scheduler

\ Retirement

Unit

RAT i

Out-of-Order Execution Engine
Figure 2-5

Instructions retrieved from the prefetch and decoding pipeline are analyzed and reordered, enabling
them to be executed as quickly as possible. By analyzing a large number of instructions, the out-of-order
execution engine can find independent instructions that can be executed (and their results saved) until
required by the rest of the program. The Pentium 4 processor can have up to 126 instructions in the out-
of-order execution engine at any one time.

There are three sections within the out-of-order execution engine:

Q The allocator

O Register renaming

Q The micro-operation scheduler
The allocator is the traffic cop for the out-of-order execution engine. Its job is to ensure that buffer space
is allocated properly for each instruction that the out-of-order execution engine is processing. If a needed

resource is not available, the allocator will stall the processing of the instruction and allocate resources
for another instruction that can complete its processing.

23

Chapter 2

The register renaming section allocates logical registers to process instructions that require register
access. Instead of the eight general-purpose registers available on the IA-32 processor (described later
in the “Registers” section), the register renaming section contains 128 logical registers. It maps register
requests made by instructions into one of the logical registers, to allow simultaneous access to the same
register by multiple instructions. The register mapping is done using the register allocation table (RAT).
This helps speed up processing instructions that require access to the same register sets.

The micro-operation scheduler determines when a micro-operation is ready for processing by examining
the input elements that it requires. Its job is to send micro-operations that are ready to be processed to
the retirement unit, while still maintaining program dependencies. The micro-operation scheduler uses
two queues to place micro-operations in — one for micro-operations that require memory access and one
for micro-operations that do not. The queues are tied to dispatch ports. Different types of Pentium pro-
cessors may contain a different number of dispatch ports. The dispatch ports send the micro-operations
to the retirement unit.

Retirement unit

The retirement unit receives all of the micro-operations from the pipeline decoders and the out-of-order
execution engine and attempts to reassemble the micro-operations into the proper order for the program
to properly execute.

The retirement unit passes micro-operations to the execution unit for processing in the order that the
out-of-order execution engine sends them, but then monitors the results, reassembling the results into
the proper order for the program to execute.

This is accomplished using a large buffer area to hold micro-operation results and place them in the
proper order as they are required.

When a micro-operation is completed and the results placed in the proper order, the micro-operation is
considered retired and is removed from the retirement unit. The retirement unit also updates informa-
tion in the branch prediction unit to ensure that it knows which branches have been taken, and which
instruction codes have been processed.

Execution unit

24

The main function of the processor is to execute instructions. This function is performed in the execution
unit. A single processor can actually contain multiple execution units, capable of processing multiple
instruction codes simultaneously.

The execution unit consists of one or more Arithmetic Logic Units (ALUs) The ALUs are specifically
designed to handle mathematical operations on different types of data. The Pentium 4 execution unit
includes separate ALUs for the following functions:

Q Simple-integer operations

QO Complex-integer operations

Q Floating-point operations

The IA-32 Platform

Low-latency integer execution unit

The low-latency integer execution unit is designed to quickly perform simple integer mathematical oper-
ations, such as additions, subtractions, and Boolean operations. Pentium 4 processors are capable of per-
forming two low-latency integer operations per clock cycle, effectively doubling the processing speed.

Complex-integer execution unit

The complex-integer execution unit handles more involved integer mathematical operations. The
complex-integer execution unit handles most shift and rotate instructions in four clock cycles.
Multiplication and division operations involve long calculation times, and often take 14 to 60 clock cycles.

Floating-point execution unit

The floating-point execution unit differs between the different processors in the IA-32 family. All
Pentium processors can process floating-point mathematical operations using the standard floating-
point execution unit. Pentium processors that contain MMX and SSE support also perform these calcula-
tions in the floating-point execution unit.

The floating-point execution unit contains registers to handle data elements that contain 64-bit to 128-bit
lengths. This enables larger floating-point values to be used in calculations, which can speed up complex
floating-point calculations, such as digital signal processing and video compression.

Registers

Most of the operations of the processor require processing data. Unfortunately, the slowest operations

a processor can undertake are trying to read or store data in memory. As shown in Figure 2-1, when the
processor accesses a data element, the request must travel outside of the processor, across the control
bus, and into the memory storage unit. This process is not only complicated, but also forces the proces-
sor to wait while the memory access is being performed. This downtime could be spent processing other
instructions.

To help solve this problem, the processor includes internal memory locations, called registers. The regis-
ters are capable of storing data elements for processing without having to access the memory storage
unit. The downside to registers is that a limited number of them are built into the processor chip.

The IA-32 platform processors have multiple groups of registers of different sizes. Different processors
within the IA-32 platform include specialized registers. The core groups of registers available to all pro-
cessors in the [A-32 family are shown in the following table.

Register Description

General purpose Eight 32-bit registers used for storing working data

Segment Six 16-bit registers used for handling memory access

Instruction pointer A single 32-bit register pointing to the next instruction code
to execute

Table continued on following page

25

Chapter 2

Register

Description

Floating-point data

Control

Debug

Eight 80-bit registers used for floating-point arithmetic data

Five 32-bit registers used to determine the operating mode
of the processor

Eight 32-bit registers used to contain information when
debugging the processor

The following sections describe the more common registers in greater detail.

General-purpose registers

The general-purpose registers are used to temporarily store data as it is processed on the processor.
The general-purpose registers have evolved from the old 8-bit 8080 processor days to 32-bit registers
available in the Pentium processors. Each new version of general-purpose registers is created to be
completely backwardly compatible with previous processors. Thus, code that uses 8-bit registers on the
8080 chips is still valid on 32-bit Pentium chips.

While most general-purpose registers can be used for holding any type of data, some have acquired spe-
cial uses, which are consistently used in assembly language programs. The following table shows the
general-purpose registers available on the Pentium platform, and what they are most often used for.

Register Description

EAX Accumulator for operands and results data
EBX Pointer to data in the data memory segment
ECX Counter for string and loop operations

EDX 1/0 pointer

EDI Data pointer for destination of string operations
ESI Data pointer for source of string operations

ESP Stack pointer

EBP Stack data pointer

The 32-bit EAX, EBX, ECX, and EDX registers can also be referenced by 16-bit and 8-bit names to repre-
sent the older versions of the registers. Figure 2-6 shows how the registers can be referenced.

26

The IA-32 Platform

EAX
31 15 7 o
AH AL
N)
AX
EBX
31 15 7 0
BH BL
_ S
BX

Figure 2-6

By using the reference AX, the lower 16 bits of the EAX register are used. By using the reference AL, the
lower 8 bits of the EAX register are used. AH references the next 8 higher bits after AL.

Segment registers
The segment registers are used specifically for referencing memory locations. The IA-32 processor plat-
form allows three different methods of accessing system memory:
Q Flat memory model
Q Segmented memory model
Q Real-address mode
The flat memory model presents all system memory as a contiguous address space. All instructions,

data, and the stack are contained in the same address space. Each memory location is accessed by a spe-
cific address, called a linear address.

The segmented memory model divides the system memory into groups of independent segments, refer-
enced by pointers located in the segment registers. Each segment is used to contain a specific type of
data. One segment is used to contain instruction codes, another data elements, and a third the program
stack.

27

Chapter 2

Memory locations in segments are defined by logical addresses. A logical address consists of a segment
address and an offset address. The processor translates a logical address to a corresponding linear
address location to access the byte of memory.

The segment registers are used to contain the segment address for specific data access. The following
table describes the available segment addresses.

Segment Register Description

CS Code segment

DS Data segment

SS Stack segment

ES Extra segment pointer
FS Extra segment pointer
GS Extra segment pointer

Each segment register is 16 bits and contains the pointer to the start of the memory-specific segment. The
CS register contains the pointer to the code segment in memory. The code segment is where the instruc-
tion codes are stored in memory. The processor retrieves instruction codes from memory based on the
CS register value, and an offset value contained in the EIP instruction pointer register. A program cannot
explicitly load or change the CS register. The processor assigns its value as the program is assigned a
memory space.

The DS, ES, FS, and GS segment registers are all used to point to data segments. By having four separate

data segments, the program can help separate data elements, ensuring that they do not overlap. The pro-
gram must load the data segment registers with the appropriate pointer value for the segments, and ref-

erence individual memory locations using an offset value.

The SS segment register is used to point to the stack segment. The stack contains data values passed to
functions and procedures within the program.

If a program is using the real address mode, all of the segment registers point to the zero linear address,
and are not changed by the program. All instruction codes, data elements, and stack elements are
accessed directly by their linear address.

Instruction pointer register

The instruction pointer register (or EIP register), sometimes called the program counter, keeps track of the
next instruction code to execute. While this sounds like a simple process, with the implementation of the
instruction prefetch cache it is not. The instruction pointer points to the next instruction to execute.

An application program cannot directly modify the instruction pointer per se. You cannot specify a

memory address and place it in the EIP register. Instead, you must use normal program control instruc-
tions, such as jumps, to alter the next instruction to be read into the prefetch cache.

28

The IA-32 Platform

In a flat memory model, the instruction pointer contains the linear address of the memory location for
the next instruction code. If the application is using a segmented memory model, the instruction pointer
points to a logical memory address, referenced by the contents of the CS register.

Control registers

The five control registers are used to determine the operating mode of the processor, and the characteris-
tics of the currently executing task. The individual control registers are described in the following table.

Control Register Description

CRO System flags that control the operating mode and states of the
processor

CR1 Not currently used

CR2 Memory page fault information

CR3 Memory page directory information

CR4 Flags that enable processor features and indicate feature capabili-
ties of the processor

The values in the control registers cannot be directly accessed, but the data contained in the control reg-
ister can be moved to a general-purpose register. Once the data is in a general-purpose register, an appli-
cation program can examine the bit flags in the register to determine the operating status of the
processor and/or currently running task.

If a change is required to a control register flag value, the change can be made to the data in the general-
purpose register, and the register moved to the control register. Systems programmers usually modify
the values in the control registers. Normal user application programs do not usually modify control reg-
isters entries, although they might query flag values to determine the capabilities of the host processor
chip on which the application is running.

Flags

For each operation that is performed in the processor, there must be a mechanism to determine whether
the operation was successful or not. The processor flags are used to perform this function.

Flags are important to assembly language programs, as they are the only means available to determine
whether a program’s function succeeded or not. For example, if an application performed a subtraction
operation that resulted in a negative value, a special flag within the processor would be set. Without
checking the flag, the assembly language program would not have any way to know that something
went wrong.

The IA-32 platform uses a single 32-bit register to contain a group of status, control, and system flags.
The EFLAGS register contains 32 bits of information that are mapped to represent specific flags of infor-
mation. Some bits are reserved for future use, to allow additional flags to be defined in future proces-
sors. At the time of this writing, 17 bits are used for flags.

29

Chapter 2

The flags are divided into three groups based on function:

Q Status flags
Q Control flags
Q System flags

The following sections describe the flags found in each group.

Status flags

The status flags are used to indicate the results of a mathematical operation by the processor. The current
status flags are shown in the following table.

Flag Bit Name

CF 0 Carry flag

PF 2 Parity flag
AF 4 Adjust flag
ZF 6 Zero flag

SF 7 Sign flag

OF 11 Overflow flag

30

The carry flag is set if a mathematical operation on an unsigned integer value generates a carry or a bor-
row for the most significant bit. This represents an overflow condition for the register involved in the
mathematical operation. When an overflow occurs, the data remaining in the register is not the correct
answer to the mathematical operation.

The parity flag is used to indicate whether the result register in a mathematical operation contains cor-
rupt data. As a simple check for validity, the parity flag is set if the total number of 1 bits in the result is
even, and is cleared if the total number of 1 bits in the result is odd. By checking the parity flag, an appli-
cation can determine whether the register has been corrupted since the operation.

The adjust flag is used in Binary Coded Decimal (BCD) mathematical operations (see Chapter 7, “Using
Numbers”). The adjust flag is set if a carry or borrow operation occurs from bit 3 of the register used for
the calculation.

The zero flag is set if the result of an operation is zero. This is most often used as an easy way to deter-
mine whether a mathematical operation results in a zero value.

The sign flag is set to the most significant bit of the result, which is the sign bit. This indicates whether
the result is positive or negative.

The overflow flag is used in signed integer arithmetic when a positive value is too large, or a negative
value is too small, to be properly represented in the register.

The IA-32 Platform

Control flags

Control flags are used to control specific behavior in the processor. Currently, only one control flag is
defined, the DF flag, or direction flag. It is used to control the way strings are handled by the processor.

When the DF flag is set (set to one), string instructions automatically decrement memory addresses to
get the next byte in the string. When the DF flag is cleared (set to zero), string instructions automatically
increment memory addresses to get the next byte in the string.

System flags

The system flags are used to control operating system-level operations. Application programs should
never attempt to modify the system flags. The system flags are listed in the following table.

Flag Bit Name

TF 8 Trap flag

IF 9 Interrupt enable flag
IOPL 12 and 13 I/0 privilege level flag
NT 14 Nested task flag

RF 16 Resume flag

VM 17 Virtual-8086 mode flag
AC 18 Alignment check flag
VIF 19 Virtual interrupt flag
vIP 20 Virtual interrupt pending flag
ID 21 Identification flag

The trap flag is set to enable single-step mode. In single-step mode, the processor performs only one
instruction code at a time, waiting for a signal to perform the next instruction. This feature is extremely
useful when debugging assembly language applications.

The interrupt enable flag controls how the processor responds to signals received from external sources.
The I/O privilege field indicates the I/O privilege level of the currently running task. This defines
access levels for the I/O address space. The privilege field value must be less than or equal to the access
level required to access the I/O address space; otherwise, any request to access the address space will

be denied.

The nested task flag controls whether the currently running task is linked to the previously executed
task. This is used for chaining interrupted and called tasks.

The resume flag controls how the processor responds to exceptions when in debugging mode.

31

Chapter 2

The virtual-8086 flag indicates that the processor is operating in virtual-8086 mode instead of protected
or real mode.

The alignment check flag is used (along with the AM bit in the CRO control register) to enable alignment
checking of memory references.

The virtual interrupt flag replicates the IF flag when the processor is operating in virtual mode.

The virtual interrupt pending flag is used when the processor is operating in virtual mode to indicate
that an interrupt is pending.

The ID flag is interesting in that it indicates whether the processor supports the CPUID instruction. If
the processor is able to set or clear this flag, it supports the CPUID instruction. If not, then the CPUID
instruction is not available.

Advanced 1A-32 Features

The core features of the IA-32 platform mentioned so far are available on all of the processors in the
family, starting with the 80386 processor. This section describes some advanced features that the assem-
bly language programmer can utilize when creating programs specifically designed for the Pentium
processors.

The x87 floating-point unit

32

Early processors in the IA-32 family required a separate processor chip to perform floating-point mathe-
matical operations. The 80287 and 80387 processors specialized in providing floating-point arithmetic
operations for the computer chips. Programmers who needed fast processing of floating-point opera-
tions were forced to turn to additional hardware to support their needs.

Starting with the 80486 processor, the advanced arithmetic functions found in the 80287 and 80387 chips
were incorporated into the main processor. To support these functions, additional instruction codes as
well as additional registers and execution units were required. Together these elements are referred to as
the x87 floating-point unit (FPU).

The x87 FPU incorporates the following additional registers:

FPU Register Description

Data registers Eight 80-bit registers for floating-point data

Status register 16-bit register to report the status of the FPU

Control register 16-bit register to control the precision of the FPU

Tag register 16-bit register to describe the contents of the eight data
registers

The IA-32 Platform

FPU Register Description

FIP register 48-bit FPU instruction pointer (FIP) points to the next FPU
instruction

FDP register 48-bit FPU data pointer (FDP) points to the data in memory

Opcode register 11-bit register to hold the last instruction processed by the FPU

The FPU registers and instruction codes enable assembly language programs to quickly process complex
floating-point mathematical functions, such as those required for graphics processing, digital signal pro-
cessing, and complex business applications. The FPU can process floating-point arithmetic considerably

faster than the software simulation used in the standard processor without the FPU. Whenever possible,

the assembly language programmer should utilize the FPU for floating-point arithmetic.

Multimedia extensions (MMX)

The Pentium II processor introduced another method for programmers to perform complex integer
arithmetic operations. MMX was the first technology to support the Intel Single Instruction, Multiple
Data (SIMD) execution model.

The SIMD model was developed to process larger numbers, commonly found in multimedia applica-
tions. The SIMD model uses expanded register sizes and new number formats to speed up the complex
number crunching required for real-time multimedia presentations.

The MMX environment includes three new floating-point data types that can be handled by the
processor:

Q 64-bit packed byte integers

O 64-bit packed word integers

Q 64-bit packed doubleword integers
These data types are described in detail in Chapter 7, “Using Numbers.” To handle the new data for-
mats, MMX technology incorporates the eight FPU registers as special-purpose registers. The MMX reg-

isters are named MMO through MM?7, and are used to perform integer arithmetic on the 64-bit packed
integers.

While the MMX technology improved processing speeds for complex integer arithmetic, it did nothing
for programs that require complex floating-point arithmetic. That problem was solved with the SSE
environment.

Streaming SIMD extensions (SSE)

The next generation of SIMD technology was implemented starting with the Pentium III processor. SSE
enhances performance for complex floating-point arithmetic, often used in 3-D graphics, motion video,
and video conferencing.

33

Chapter 2

The first implementation of SSE in the Pentium III processor incorporated eight new 128-bit registers
(called XMMO through XMM?) and a new data type —a 128-bit packed single-precision floating point.
The SSE technology also incorporated additional new instruction codes for processing up to four 128-bit
packed single-precision floating-point numbers in a single instruction.

The second implementation of SSE (SSE2) in the Pentium 4 processors incorporates the same XMM reg-
isters that SSE uses, and also introduces five new data types:

128-bit packed double-precision floating point
128-bit packed byte integers

128-bit packed word integers

128-bit packed doubleword integers

O 00 oo

128-bit packed quadword integers

These data types are also described in detail in Chapter 7. The new data types and the corresponding
instruction codes enable programmers to utilize even more complex mathematical operations within
their programs. The 128-bit double-precision floating-point data types allow for advanced 3-D geometry
techniques, such as ray tracing, to be performed with minimal processor time.

A third implementation of SSE (SSE3) does not create any new data types, but provides several new
instructions for processing both integer and floating-point values in the XMM registers.

Hyperthreading

One of the most exciting features added to the Pentium 4 processor line is hyperthreading. Hyperthreading
enables a single IA-32 processor to handle multiple program execution threads simultaneously.

The hyperthreading technology consists of two or more logical processors located on a single physical
processor. Each logical processor contains a complete set of general-purpose, segment, control, and
debug registers. All of the logical processors share the same execution unit. The out-of-order execution
core is responsible for handling the separate threads of instruction codes provided by the different logi-
cal processors.

Most of the advantages of hyperthreading appear at the operating system level. Multitasking operating
systems, such as Microsoft Windows and the various UNIX implementations, can assign application
threads to the individual logical processors. To the application programmer, hyperthreading may not
appear to be that much of a benefit.

The IA-32 Processor Family

34

At the time of this writing, the IA-32 family of processors is the most popular computing platform used
in desktop workstations and many server environments. The most popular operating system that
utilizes the IA-32 platform is Microsoft Windows, although other popular operating systems run on the
IA-32 platform, such as Novell file servers, and UNIX-based OSs such as Linux and the BSD derivatives.

The IA-32 Platform

While many advances in the IA-32 processor platform have been made throughout the years, many
features are common to all IA-32 processors. The features mentioned in this chapter form the core of all
assembly language programs written for the IA-32 platform. However, knowing the special features
available on a particular processor can help speed your assembly language program along very nicely.
This section describes the different processors available in the IA-32 family, and how their features must
be taken into consideration when programming for the platform.

Intel processors

Of course, Intel is the main supplier of processors in the IA-32 platform. In today’s computing environ-
ment, the most commonly used processor platform is the Pentium processor. It is extremely unusual to
encounter hardware from the earlier IA-32 processors, such as the 80486 processor.

Unfortunately, several different types of Pentium processors are still active in businesses, schools, and
homes. Creating assembly language programs that utilize advanced IA-32 features found only on the
latest processors may limit your application’s marketability. Conversely, if you know that your program-
ming environment consists of a specific type of processor, utilizing available features may help give your
application the performance boost needed to smoke the competition.

This section describes the different types of Pentium processors commonly available in workstations and
servers, highlighting the features that are available with each processor.

The Pentium processor family

The core of the Pentium processor line is, of course, the base Pentium processor. The Pentium processor
was introduced in 1993 as a replacement for the 80486 processor. The Pentium processor was the first
processor to incorporate the dual execution pipeline, and was the first processor to use a full 32-bit
address bus and 64-bit internal data path.

While the performance benefits of the Pentium processor were obvious, from a programming point of
view, the Pentium processor did not provide any new features beyond the 80486 architecture. All of the
core registers and instruction codes from the 80486 processor were supported, including the internal
FPU support.

The P6 processor family

The P6 processor family was introduced in 1995 with the Pentium Pro processor. The Pentium Pro pro-
cessor incorporated a completely new architecture from the original Pentium processor. The P6 family of
processors were the first to utilize a superscalar microarchitecture, which greatly increased performance
by enabling multiple execution units and instruction prefetch pipelines.

The Pentium MMX and Pentium II processors, part of the P6 family, were the first processors to incorpo-
rate MMX technology, and also introduced new low-power states that enabled the processor to be put in
sleep mode when idling. This feature helped conserve power, and became the ideal platform for laptop
computing devices.

The Pentium III processor was the first processor to incorporate SSE technology, enabling programmers
to perform complex floating-point arithmetic operations both quickly and easily.

35

Chapter 2

The Pentium 4 processor family

The Pentium 4 processor was introduced in 2000, and again started a new trend in microprocessor
design. The Pentium 4 utilizes the Intel NetBurst architecture, which provides extremely fast processing
speeds by incorporating the instruction pipelines, the out-of-order execution core, and execution units.

The Pentium 4 processor supports SSE3, a more advanced SSE technology that implements additional
floating-point operations to support high-speed multimedia computations.

The Pentium Xeon processor family

In 2001, Intel introduced the Pentium Xeon processor. It is primarily intended for multi-processor server
operations. It supports the MMX, SSE, SSE2, and SSE3 technologies.

Non-Intel processors

While the IA-32 platform is often considered to be an Intel thing, there are many other non-Intel proces-
sors available on the market that also implement the IA-32 features. It is possible that your assembly lan-
guage application may be run on a non-Intel platform, so it is important that you understand some
differences between the platforms.

AMD processors

Today, Intel’s biggest competitor is AMD. AMD has released a competing processor chip for every
release of Intel’s Pentium processor. It is not uncommon to run across Microsoft Windows workstations
using AMD processors. The following table shows the AMD processor’s history.

AMD Processor Equivalent to Notes

K5 Pentium 100% software compatible

K6 Pentium MMX Pentium with full MMX support
K6-2 Pentium II Uses 3D Now technology

Ke-111 Pentium III

Athlon Pentium 4

Athlon XP Pentium 4 w/SSE

For the assembly language programmer, the most important difference between AMD and Intel proces-
sors is apparent when using SIMD technology. While AMD has duplicated the MMX technology, it has
not fully duplicated the newer SSE technology. When Intel introduced SSE in the Pentium II processor,
AMD took a different route. The AMD K6-2 processor uses a different SIMD technology called 3D Now.
The 3D Now technology uses similar registers and data types as SSE, but it is not software compatible.
This has caused high-speed programmers considerable difficulty when programming for SSE functions.

With the release of the Athlon XP processor in 2001, AMD supported SSE integer arithmetic. At the time
of this writing, the newest AMD processor chips now fully support SSE technology.

36

The IA-32 Platform

Cyrix processors

While the Cyrix corporation has not been in business for a few years, their IA-32 platform processors
still live on in many workstations and low-end servers. It is still possible to run across a Cyrix processor
in various environments.

The evolution of the Cyrix processor family mirrored the Intel processors for many versions. The

first Pentium-grade processor produced by Cyrix was originally called the 6x86 processor. It is

100 percent software compatible with the Pentium processor. When Intel introduced MMX technology,
Cyrix produced the 6x86MX processor (they didn’t have a license to call it MMX, but MX was close
enough).

When Cyrix was sold to the VIA chipset company, the original Cyrix processor line was renamed. The
6x86 processor was called the M1, and the 6x86MX processor was called M2. Again, these processors
retained their compatibility with their Pentium counterparts.

Before the demise of the Cyrix processor, one final version made it to market. Dubbed the Cyrix III, it
was also compatible with the Pentium III processor. Unfortunately, similar to AMD, it too had to support
SSE using the 3D Now technology, which made it incompatible with assembly language programs writ-
ten for SSE.

Summary

Before writing an assembly language program, you must know the target processor used when the
program is executed. The most popular processor platform in use today is the Intel IA-32 platform.
This platform includes the Pentium family of processors from Intel, as well as the Athlon processors
from AMD.

The flagship of the IA-32 platform is the Intel Pentium 4 processor. It incorporates the NetBurst architec-
ture to quickly and easily process instructions and data. The core of the NetBurst architecture includes a
control unit, an execution unit, registers, and flags.

The control unit controls how the execution unit processes instructions and data. Speed is accomplished
by prefetching and decoding instructions from memory long before the execution unit processes them.
Instructions can also be processed out of order and the results stored until they are needed in the
application.

The execution unit in a Pentium 4 processor has the capability of processing multiple instructions con-
currently. Simple integer processes are performed quickly and stored in the out-of-order area in the con-
trol unit until needed. Complex integer and floating-point processes are also streamlined to increase
performance.

Registers are used as local data storage within the processor to prevent costly memory access for data.
The IA-32 platform processors provide several general-purpose registers for holding data and pointers
as the program is executed. Instructions are retrieved from memory based on the value of the instruction
pointer register. The control register controls the processor’s behavior.

37

Chapter 2

38

A special register containing several flags determines the status and operation of the processor. Each flag
represents a different operation within the processor. Status flags indicate the result of operations per-
formed by the processor. Control flags control how the processor behaves for specific operations. System
flags determine operating system behavior, and should not be touched by application programmers.

Innovation in the IA-32 platform is alive and well. Many new features have been introduced in recent
processor releases. The floating-point unit (FPU) has been incorporated into Pentium processors to assist
in floating-point mathematical operations.

To further support complex mathematical processing, the Single Instruction, Multiple Data (SIMD) tech-
nology enables the processing of large numerical values in both integer and floating-point form. The
Multimedia Extensions (MMX) enable programmers to use 64-bit integers in high-precision integer cal-
culations. Following that, the Streaming SIMD Extensions (SSE) technology enables programmers to use
128-bit single-precision floating-point values, and subsequently, the SSE2 technology enables the use of
128-bit double-precision floating-point data values. These new data types greatly speed up the process-
ing of mathematically intensive programs, such as those used for multimedia processing and digital sig-
nal processing.

When programming for the IA-32 platform, you should be aware of the different processors available,
and know what functions each processor type supports. The core of the IA-32 platform is the original
Pentium processor. It supports the core IA-32 registers and instruction sets, along with simple built-in
FPU support. Similar to the Pentium processor, AMD produced the K5 processor, and Cyrix produced
the 6x86 processor. Each of these processors is 100 percent software compatible with the IA-32 instruc-
tion code set.

Intel introduced MMX functionality in the Pentium II processor line. Following suit, AMD incorporated
MMX features in the K6 processor, and Cyrix with the 6x86MX processor. All of these processors include
the MMX registers, and the additional MMX instruction codes.

The SSE technology is where things get complicated in the IA-32 world. The Pentium II processor intro-
duced SSE registers and instruction sets, but unfortunately, other processor manufacturers were not able
to directly incorporate these features. Instead, AMD and Cyrix implemented the 3D Now technology in
their K6-2 (AMD) and Cyrix III (Cyrix) processors. The 3D Now technology provided the same 64-bit
integer data types as SSE, but the instruction codes were different.

At the time of this writing, the Pentium 4 processor is the flagship processor for Intel. It supports SSE3
technology, as well as the NetBurst architecture. The AMD rival is the Athlon XP, which now incorpo-
rates SSE registers and instruction sets, making it software compatible with the Pentium 4 processor.

Now that you have an understanding of the hardware platform used in this book, it’s time to examine
the software development environment. The next chapter discusses the assembly language tools that are
available in the Linux operating system environment. By using Linux, you can leverage the GNU devel-
opment tools to create a professional software development environment with minimal cost.

H

The Tools
of the Trade

Now that you are familiar with the IA-32 hardware platform, it’s time to dig into the tools neces-
sary to create assembly language programs for it. To create assembly language programs, you
must have some type of development environment. Many different assembly language develop-
ment tools are available, both commercially and for free. You must decide which development
environment works best for you.

This chapter first examines what development tools you should have to create assembly language
programs. Next, the programming development tools produced by the GNU project are discussed.
Each tool is described, including downloading and installation.

The Development Tools

Just like any other profession, programming requires the proper tools to perform the job. To create
a good assembly language development environment, you must have the proper tools at your dis-
posal. Unlike a high-level language environment in which you can purchase a complete develop-
ment environment, you often have to piece together an assembly language development
environment. At a minimum you should have the following:

O Anassembler
Q Alinker
QO Adebugger

Chapter 3

Additionally, to create assembly language routines for other high-level language programs, you should
also have these tools:

Q A compiler for the high-level language

0 An object code disassembler

Q A profiling tool for optimization

The following sections describe each of these tools, and how they are used in the assembly language
development environment.

The assembler

40

To create assembly language programs, obviously you need some tool to convert the assembly language
source code to instruction code for the processor. This is where the assembler comes in.

As mentioned in Chapter 1, “What Is Assembly Language?,” assemblers are specific to the underlying
hardware platform for which you are programming. Each processor family has its own instruction code
set. The assembler you select must be capable of producing instruction codes for the processor family on
your system (or the system you are developing for).

The assembler produces the instruction codes from source code created by the programmer. If you
remember from Chapter 1, there are three components to an assembly language source code program:

QO Opcode mnemonics
0 Data sections

a Directives

Unfortunately, each assembler uses different formats for each of these components. Programming using
one assembler may be totally different from programming using another assembler. While the basics are
the same, the way they are implemented can be vastly different.

The biggest difference between assemblers is the assembler directives. While opcode mnemonics are
closely related to processor instruction codes, the assembler directives are unique to the individual
assembler. The directives instruct the assembler how to construct the instruction code program. While
some assemblers have a limited number of directives, some have an extensive number of directives.
Directives do everything from defining program sections to implementing if-then statements or while
loops.

You may also have to take into consideration how you will write your assembly language programs.
Some assemblers come complete with built-in editors that help recognize improper syntax while you are
typing the code, while others are simply command-line programs that can only assemble an existing
code text file. If the assembler you choose does not contain an editor, you must select a good editor for
your environment. While using the UNIX vi editor can work for simple programs, you probably
wouldn’t want to code a 10,000-line assembly program using it.

The Tools of the Trade

The bottom line for choosing an assembler is its ability to make creating an instruction code program for
your target environment as simple as possible. The next sections describe some common assemblers that
are available for the Intel IA-32 platform.

MASM

The granddaddy of all assemblers for the Intel platform, the Microsoft Assembler (MASM) is the prod-
uct of the Microsoft Corporation. It has been available since the beginning of the IBM-compatible PC,
enabling programmers to produce assembly language programs in both the DOS and Windows
environments.

Because MASM has been around for so long, numerous tutorials, books, and example programs are
floating around, many of which are free or low-cost. While Microsoft no longer sells MASM as a stand-
alone product, it is still bundled with the Microsoft’s Visual Studio product line of compilers. The benefit
of using Visual Studio is its all-encompassing Integrated Development Environment (IDE). Microsoft has
also allowed various companies and organizations to distribute just the MASM 6.0 files free of charge,
enabling you to assemble your programs from a command prompt. Doing a Web search for MASM 6.0
will produce a list of sites where it can be downloaded free of charge.

Besides MASM, an independent developer, Steve Hutchessen, has created the MASM32 development
environment. MASM32 incorporates the original MASM assembler and the popular Windows Win32
Application Programming Interface (API), used mainly in C and C++ applications. This enables assem-
bly language programmers to create full-blown Windows programs entirely in assembly language pro-
grams. The MASM32 Web site is located at www.masm32 . com.

NASM

The Netwide Assembler (NASM) was developed originally as a commercial assembler package for the
UNIX environment. Recently, the developers have released NASM as open-source software for both the
UNIX and Microsoft environments. It is fully compatible with all of the Intel instruction code set and can
produce executable files in UNIX, 16-bit MS-DOS, and 32-bit Microsoft Windows formats.

Similar to MASM, quite a few books and tutorials are available for NASM. The NASM download page is
located at http: //nasm.sourceforge.net.

GAS

The Free Software Foundation’s GNU project has produced many freely available software packages
that run in the UNIX operating system environment. The GNU assembler, called gas, is the most popu-
lar cross-platform assembler available for UNIX.

That is correct, I did say cross-platform. While earlier I mentioned that assemblers are specific to indi-
vidual processor families, gas is an exception. It was developed to operate on many different processor
platforms. Obviously, it must know which platform it is being used on, and creates instruction code
programs depending on the underlying platform. Usually gas is capable of automatically detecting the
underlying hardware platform and creates appropriate instruction codes for the platform with no opera-
tor intervention.

41

Chapter 3

One unique feature of gas is its ability to create instruction codes for a platform other than the one you
are programming on. This enables a programmer working on an Intel-based computer to create assem-
bly language programs for a system that is MIPS-based. Of course, the downside is that the programmer
can’t test the produced program code on the host system.

This book uses the GNU assembler to assemble all of the examples. Not only is it a good standalone
assembler, it is also what the GNU C compiler uses to convert the compiled C and C++ programs to
instruction codes. By knowing how to program assembly language with gas, you can also easily incor-
porate assembly language functions in your existing C and C++ applications, which is one of the
main points of this book.

HLA

The High Level Assembler (HLA) is the creation of Professor Randall Hyde. It creates Intel instruction
code applications on DOS, Windows, and Linux operating systems.

The primary purpose of HLA was to teach assembly language to beginning programmers. It incorpo-
rates many advanced directives to help programmers make the leap from a high-level language to
assembly language (thus its name). It also has the ability to use normal assembly code statements, pro-
viding programmers with a robust platform for easily migrating from high-level languages such as C
or C++ to assembly language.

The HLA Web site is located at http: //webster.cs.ucr.edu. Professor Hyde uses this Web site as a
clearinghouse for various assembler information. Not only is a lot of information for HLA located there,
it also includes links to many other assembler packages.

The linker

42

If you are familiar with a high-level language environment, it is possible that you have never had to
directly use a linker. Many high-level languages such as C and C++ perform both the compile and link
steps with a single command.

The process of linking objects involves resolving all defined functions and memory address labels
declared in the program code. To do this, any external functions, such as the C language printf
function, must be included with the object code (or a reference made to an external dynamic library).
For this to work automatically, the linker must know where the common object code libraries are
located on the computer, or the locations must be manually specified with compiler command-line
parameters.

However, most assemblers do not automatically link the object code to produce the executable program
file. Instead, a second manual step is required to link the assembly language object code with other
libraries and produce an executable program file that can be run on the host operating system. This is
the job of the linker.

When the linker is invoked manually, the developer must know which libraries are required to com-
pletely resolve any functions used by the application. The linker must be told where to find function
libraries and which object code files to link together to produce the resulting file.

The Tools of the Trade

Every assembler package includes its own linker. You should always use the appropriate linker for the
assembler package you are developing with. This helps ensure that the library files used to link functions
together are compatible with each other, and that the format of the output file is correct for the target
platform.

The debugger

If you are a perfect programmer, you will never need to use a debugger. However, it is more likely that
somewhere in your assembly language programming future you will make a mistake — either a small
typo in your 10,000-line program, or a logic mistake in your mathematical algorithm functions. When
this happens, it is handy to have a good debugger available in your toolkit.

Similar to assemblers, debuggers are specific to the operating system and hardware platform for which
the program was written. The debugger must know the instruction code set of the hardware platform,
and understand the registers and memory handling methods of the operating system.

Most debuggers provide four basic functions to the programmer:

O Running the program in a controlled environment, specifying any runtime parameters required
Q Stopping the program at any point within the program

0O Examining data elements, such as memory locations and registers

a

Changing elements in the program while it is running, to facilitate bug removal

The debugger runs the program within its own controlled “sandbox.” The sandbox enables the program

to access memory areas, registers, and I/O devices, but all under the control of the debugger. The debug-
ger is able to control how the program accesses items and can display information about how and when

the program accesses the items.

At any point during the execution of the program, the debugger is able to stop the program and indicate
where in the source code the execution was stopped. To accomplish this, the debugger must know the
original source code and what instruction codes were generated from which lines of source code. The
debugger requires additional information to be compiled into the executable file to identify these ele-
ments. Using a specific command-line parameter when the program is compiled or assembled usually
accomplishes this task.

When the program is stopped during execution, the debugger is able to display any memory area or
register value associated with the program. Again, this is accomplished by running the program within
the debugger’s sandbox, enabling the debugger to peek inside the program as it is executing. By being
able to see how individual source code statements affect the values of memory locations and registers,
the programmer can often see where an error in the program occurs. This feature is invaluable to the
programmer.

Finally, the debugger provides a means for the programmer to change data values within the program

as it is executing. This enables the programmer to make changes to the program as it is running and see
how the changes affect the outcome of the program. This is another invaluable feature, saving the time

43

Chapter 3

of having to change values in source code, recompiling the source code, and rerunning the executable
program file.

The compiler

If all you plan to do is program in assembly language, a high-level language compiler is not necessary.
However, as a professional programmer, you probably realize that creating full-blown applications
using only assembly language, although possible, would be a massive undertaking.

Instead, most professional programmers attempt to write as much of the application as possible in a
high-level language, such as C or C++, and concentrate on optimizing the trouble spots using assembly
language programming. To do this, you must have the proper compiler for your high-level language.

The compiler’s job is to convert the high-level language into instruction code for the processor to exe-
cute. Most compilers, though, produce an intermediate step. Instead of directly converting the source
code to instruction code, the compiler converts the source code to assembly language code. The assem-
bly language code is then converted to instruction code, using an assembler. Many compilers include
the assembler process within the compiler, although not all do.

After converting the C or C++ source code to assembly language, the GNU compiler uses the GNU
assembler to produce the instruction codes for the linker. You can stop the process between these steps
and examine the assembly language code that is generated from the C or C++ source code. If you think
something can be optimized, the generated assembly language code can be modified, and the code
assembled into new instruction codes.

The object code disassembler

When trying to optimize a high-level language, it usually helps to see how that code is being run on the
processor. To do that you need a tool to view the instruction code that is generated by the compiler from
the high-level language source code. The GNU compiler enables you to view the generated assembly
language code before it is assembled, but what about after the object file is already created?

A disassembler program takes either a full executable program or an object code file and displays the
instruction codes that will be run by the processor. Some disassemblers even take the process one step
further by converting the instruction codes into easily readable assembly language syntax.

After viewing the instruction codes generated by the compiler, you can determine if the compiler pro-
duced sufficiently optimized instruction codes or not. If not, you might be able to create your own
instruction code functions to replace the compiler-generated functions to improve the performance of
your application.

The profiler

If you are working in a C or C++ programming environment, you often need to determine which func-

tions your program is spending most of its time performing. By finding the process-intensive functions,
you can narrow down which functions are worth your time trying to optimize. Spending days optimiz-
ing a function that only takes 5 percent of the program’s processing time would be a waste of your time.

44

The Tools of the Trade

To determine how much processing time each function is taking, you must have a profiler in your
toolkit. The profiler is able to track how much processor time is spent in each function as it is used dur-
ing the course of the program execution.

In order to optimize a program, once you narrow down which functions are causing the most time
drain, you can use the disassembler to see what instruction codes are being generated. After analyzing
the algorithms used to ensure they are optimized, it is possible that you can manually generate the
instruction codes using advanced processor instructions that the compiler did not use to optimize the
function.

The GNU Assembler

The GNU assembler program (called gas) is the most popular assembler for the UNIX environment. It
has the ability to assemble instruction codes from several different hardware platforms, including the
following:

(W]

VAX

AMD 29K
Hitachi H8/300
Intel 80960
M680x0

SPARC

Intel 80x86
Z8000

MIPS

O 00U U000 d

All of the assembly language examples in this book are written for gas. Many UNIX systems include gas
in the installed operating system programs. Most Linux distributions include it by default in the devel-
opment kit implementations.

This section describes how you can download and install gas, as well as how to create and assemble
assembly language programs using it.

Installing the assembler

Unlike most other development packages, the GNU assembler is not distributed in a package by itself.
Instead, it is bundled together with other development software in the GNU binutils package.

You may or may not need all of the subpackages included with the binutils package, but it is nota

bad idea to have them installed on your system. The following table shows all of the programs installed
by the current binutils package (version 2.15):

45

Chapter 3

Package Description

addr2line Converts addresses into filenames and line numbers
ar Creates, modifies, and extracts file archives

as Assembles assembly language code into object code
c++filt Filter to demangle C++ symbols

gprof Program to display program profiling information

1d Linker to convert object code files into executable files
nlmconv Converts object code into Netware Loadable Module format
nm Lists symbols from object files

objcopy Copies and translates object files

objdump Displays information from object files

ranlib Generates an index to the contents of an archive file
readelf Displays information from an object file in ELF format
size Lists the section sizes of an object or archive file
strings Displays printable strings found in object files

strip Discards symbols

windres Compiles Microsoft Windows resource files

46

Most Linux distributions that support software development already include the binutils package
(especially when the distribution includes the GNU C compiler). You can check for the binutils pack-
age using your particular Linux distribution package manager. On my Mandrake Linux system, which
uses RedHat Package Management (RPM) to install packages, I checked for binutils using the follow-
ing command:

$ rpm -ga | grep binutils
libbinutils2-2.10.1.0.2-4mdk
binutils-2.10.1.0.2-4mdk

S

The output from the rpm query command shows that two RPM packages are installed for binutils. The
first package, 1ibbinutils2, installs the low-level libraries required by the binutils packages. The sec-
ond package, binutils, installs the actual packages. The package available on this system is version 2.10.

If you have a Linux distribution based on the Debian package installer, you can query the installed pack-
ages using the dpkg command:

$ dpkg -1 | grep binutil

i1 binutils 2.14.90.0.7-3 The GNU assembler, linker and binary utilities
ii Dbinutils-doc 2.14.90.0.7-3 Documentation for the GNU assembler, linker

S

The Tools of the Trade

The output shows that the binutils version 2.14 package is installed on this Linux system.

It is often recommended not to change the binutils package on your Linux distribution if one is
already installed and being used. The binutils package contains many low-level library files that are
used to compile operating system components. If those library files change or are moved, bad things can
happen to your system, very bad things.

If your system does not include the binutils package, you can download the package from the
binutils Web site, located at http: //sources.redhat.com/binutils. This Web page contains a
link to the binutils download page, ftp://ftp.gnu.org/gnu/binutils/. From there you can
download the source code for the current version of binutils. At the time of this writing, the current
version is 2.15, and the download file is called binutils-2.15.tar.gz.

After the installation package is downloaded, it can be extracted into a working directory with the fol-
lowing command:

tar -zxvf binutils-2.15.tar.gz

This command creates a working directory called binutils-2.15 under the current directory. To com-
pile the binutils packages, change to the working directory, and use the following commands:

./configure
make

The configure command examines the host system to ensure that all of the packages and utilities
required to compile the packages are available on the system. Once the software packages have been
compiled, you can use the make install command to install the software into common areas for
others to use.

Using the assembler

The GNU assembler is a command-line-oriented program. It should be run from a command-line
prompt, with the appropriate command-line parameters. One oddity about the assembler is that
although it is called gas, the command-line executable program is called as.

The command-line parameters available for as vary depending on what hardware platform is used for
the operating system. The command-line parameters common to all hardware platforms are as follows:

as [-alcdhlns][=file]] [-D] [--defsym sym=val]
[-f] [--gstabs] [--gstabs+] [--gdwarf2] [--help]
[-I dir] [-J] [-K] [-L]
[--1listing-lhs-width=NUM] [--listing-lhs-width2=NUM]
[--1listing-rhs-width=NUM] [--listing-cont-lines=NUM]
[--keep-locals] [-o objfile] [-R] [--statistics] [-V]
[-version] [--version] [-W] [--warn] [--fatal-warnings]
[-w] [-x] [-Z] [--target-help] [target-options]
[--|files ...]

47

Chapter 3

These command-line parameters are explained in the following table:

Parameter Description

-a Specifies which listings to include in the output

-D Included for backward compatibility, but ignored
—defsym Define symbol and value before assembling source code
-f Fast assemble, skips comments and white space
—-gstabs Includes debugging information for each source code line
--gstabs+ Includes special gdb debugging information

-1 Specify directories to search for include files

-J Do not warn about signed overflows

-K Included for backward compatibility, but ignored

-L Keep local symbols in the symbol table

—-listing-lhs-width
--listing-lhs-width2

—listing-rhs-width

--listing-cont-lines

Set the maximum width of the output data column

Set the maximum width of the output data column for
continual lines

Set the maximum width of input source lines

Set the maximum number of lines printed in a listing for a
single line of input

-0 Specify name of the output object file

-R Fold the data section into the text section

--statistics Display the maximum space and total time used by the
assembly

-v Display the version number of as

-W Do not display warning messages

Use standard input for source files

An example of converting the assembly language program test. s to the object file test .o would be as
follows:

as -o test.o test.s
This creates an object file test . o containing the instruction codes for the assembly language program. If

anything is wrong in the program, the assembler will let you know and indicates where the problem is
in the source code:

48

The Tools of the Trade

$ as -o test.o test.s
test.s: Assembler messages:
test.s:16: Error: no such instruction: ‘mpvl $4,%eax'

$

The preceding error message specifically points out that the error occurred in line 16 and displays the
text for that line. Oops, looks like a typo in line 16.

word about opcode syntax

One of the more confusing parts of the GNU assembler is the syntax it uses for representing assembly
language code in the source code file. The original developers of gas chose to implement AT&T opcode
syntax for the assembler.

The AT&T opcode syntax originated from AT&T Bell Labs, where the UNIX operating system was cre-
ated. It was formed based on the opcode syntax of the more popular processor chips used to implement
UNIX operating systems at the time. While many processor manufacturers used this format, unfortu-
nately Intel chose to use a different opcode syntax.

Because of this, using gas to create assembly language programs for the Intel platform can be tricky.
Most documentation for Intel assembly language programming uses the Intel syntax, while most docu-
mentation written for older UNIX systems uses AT&T syntax. This can cause confusion and extra work
for the gas programmer.

Most of the differences appear in specific instruction formats, which will be covered as the instructions
are discussed in the chapters. The main differences between Intel and AT&T syntax are as follows:

Q AT&T immediate operands use a $ to denote them, whereas Intel immediate operands are
undelimited. Thus, when referencing the decimal value 4 in AT&T syntax, you would use $4,
and in Intel syntax you would just use 4.

Q AT&T prefaces register names with a %, while Intel does not. Thus, referencing the EAX register
in AT&T syntax, you would use %eax.

O AT&T syntax uses the opposite order for source and destination operands. To move the decimal
value 4 to the EAX register, AT&T syntax would be movl $4, %eax, whereas for Intel it would
be mov eax, 4.

Q AT&T syntax uses a separate character at the end of mnemonics to reference the data size used
in the operation, whereas in Intel syntax the size is declared as a separate operand. The AT&T
instruction movl $test, %eaxisequivalenttomov eax, dword ptr test inIntel syntax.

QO Long calls and jumps use a different syntax to define the segment and offset values. AT&T syn-
tax uses 1jmp $section, $offset, whereas Intel syntax uses jmp section:offset.

While the differences can make it difficult to switch between the two formats, if you stick to one or the
other you should be OK. If you learn assembly language coding using the AT&T syntax, you will be
comfortable creating assembly language programs on most any UNIX system available, on most any
hardware platform. If you plan on doing cross-platform work between UNIX and Microsoft Windows
systems, you may want to consider using Intel syntax for your applications.

49

Chapter 3

The GNU assembler does provide a method for using Intel syntax instead of AT&T syntax, but at the
time of this writing it is somewhat clunky and mostly undocumented. The . intel_syntax directive in
an assembly language program tells as to assemble the instruction code mnemonics using Intel syntax
instead of AT&T syntax. Unfortunately, there are still numerous limitations to this method. For example,
even though the source and destination orders switch to Intel syntax, you must still prefix register
names with the percent sign (as in AT&T syntax). It is hoped that some future version of as will support
full Intel syntax assembly code.

All of the assembly language programs presented in this book use the AT&T syntax.

The GNU Linker

50

The GNU linker, 14, is used to link object code files into either executable program files or library files.
The 1d program is also part of the GNU binutils package, so if you already have the GNU assembler
installed, the linker is likely to be installed.
The format of the 1d command is as follows:
1d o output] objfile...

-Aarchitecture] [-b input-format] [-Bstatic]
Bdynamic] [-Bsymbolic] [-c commandfile] [--cref]
d|-dc|-dp]
defsym symbol=expression] [--demangle]
--no-demangle] [-e entry] [-embedded-relocs] [-E]
export-dynamic] [-f name] [--auxiliary name]
-F name] [--filter name] [-format input-format]
gl [-G size] [-h name] [-soname name] [--help]
i] [-lar] [-Lsearchdir] [-M] [-Map mapfile]
-m emulation] [—n|—N] [-noinhibit-exec]
no-keep-memory] [-no-warn-mismatch] [-Olevel]
-oformat output-format] [-R filename] [-relax]
r| -Ur] [-rpath directory] [-rpath-link directory]

S] [-s] [-shared] [-sort-common]
split-by-reloc count] [-split-by-file]
-T commandfile]
--section-start sectionname=sectionorg]

[-
[
[-
[-
[-
[
[-
[-
[-
[-
[
[-
[-
[-
[-
[-
[-
[
[-Ttext textorg] [-Tdata dataorg] [-Tbss bssorgl]
[-

[

[

[

[

t] [-u sym] [-V] [-v] [--verbose] [--version]
-warn-common] [-warn-constructors]
-warn-multiple-gp] [-warn-once]
-warn-section-align] [--whole-archive]
--no-whole-archive] [--wrap symbol] [-X] [-x]

While that looks like a lot of command-line parameters, in reality you should not have to use very many
of them at any one time. This just shows that the GNU linker is an extremely versatile program and has
many different capabilities. The following table describes the command-line parameters that are used for
the Intel platform.

The Tools of the Trade

Parameter Description

-b Specifies the format of the object code input files.

-Bstatic Use only static libraries.

-Bdynamic Use only dynamic libraries.

-Bsymbolic Bind references to global symbols in shared libraries.

-c Read commands from the specified command file.

--cref Create a cross-reference table.

-d Assign space to common symbols even if relocatable output is
specified.

-defsym Create the specified global symbol in the output file.

--demangle Demangle symbol names in error messages.

-e Use the specified symbol as the beginning execution point of the
program.

-E For ELF format files, add all symbols to the dynamic symbol table.

-f For ELF format shared objects, set the DT_AUXILIARY name.

-F For ELF format shared objects, set the DT_FILTER name.

-format Specify the format of the object code input files (same as -b).

-g Ignored. Used for compatibility with other tools.

-h For ELF format shared objects, set the DT_SONAME name.

-i Perform an incremental link.

-1 Add the specified archive file to the list of files to link.

-L Add the specified path to the list of directories to search for
libraries.

-M Display a link map for diagnostic purposes.

-Map Create the specified file to contain the link map.

-m Emulate the specified linker.

-N Specifies read /write text and data sections.

-n Sets the text section to be read only.

-noinhibit-exec
-no-keep-memory

-no-warn-mismatch

Produce an output file even if non-fatal link errors appear.
Optimize link for memory usage.

Allow linking mismatched object files.

Table continued on following page

51

Chapter 3

52

Parameter Description

-O Generate optimized output files.

-0 Specify the name of the output file.

-oformat Specify the binary format of the output file.

-R Read symbol names and addresses from the specified filename.
T Generates relocatable output (called partial linking).

-rpath Add the specified directory to the runtime library search path.
-rpath-link Specify a directory to search for runtime shared libraries.

-S Omits debugger symbol information from the output file.

-s Omits all symbol information from the output file.

-shared Create a shared library.

-sort-common

-split-by-reloc

-split-by-file

--section-start

-T
-Ttext
-Tdata
-Tbss

-u

-warn-common

-warn-constructors
-warn-once
-warn-section-align
--whole-archive

-X

-X

Do not sort symbols by size in output file.

Creates extra sections in the output file based on the specified
size.

Creates extra sections in the output file for each object file.

Locates the specified section in the output file at the specified
address.

Specifies a command file (same as -c).

Use the specified address as the starting point for the text section.
Use the specified address as the starting point for the data section.
Use the specified address as the starting point for the bss section.
Displays the names of the input files as they are being processed.

Forces the specified symbol to be in the output file as an unde-
fined symbol.

Warn when a common symbol is combined with another common
symbol.

Warn if any global constructors are not used.

Warn only once for each undefined symbol.

Warn if the output section address is changed due to alignment.
For the specified archive files, include all of the files in the archive.
Delete all local temporary symbols.

Delete all local symbols.

The Tools of the Trade

For the simplest case, to create an executable file from an object file generated from the assembler, you
would use the following command:

1d -o mytest mytest.o

This command creates the executable file test from the object code file test . o. The executable file is
created with the proper permissions so it can be run from the command line in a UNIX console. Here’s
an example of the process:

$1d -o test test.o

$ 1s -al test

—TWXY-XT-X 1 rich rich 787 Jul 6 11:53 test
S ./test

Hello world!

$

The linker automatically created the executable file with UNIX 755 mode access, allowing anyone on the
system to execute it but only the owner to modify it.

The GNU Compiler

The GNU Compiler Collection (gcc) is the most popular development system for UNIX systems. Not
only is it the default compiler for Linux and most open-source BSD-based systems (such as FreeBSD and
NetBSD), it is also popular on many commercial UNIX distributions as well.

gcc is capable of compiling many different high-level languages. At the time of this writing, gcc could
compile the following high-level languages:

C

C++
Objective-C
Fortran
Java

Ada

U 00U oo

Not only does gcc provide a means for compiling C and C++ applications, it also provides the libraries
necessary to run C and C++ applications on the system. The following sections describe how to install
gcc on your system and how to use it to compile high-level language programs.

Downloading and installing gcc

Many UNIX systems already include the C development environment, installed by default. The gcc
package is required to compile C and C++ programs. For systems using RPM, you can check for gcc
using the following:

53

Chapter 3

$ rpm -ga | grep gcc
gcc-cpp-2.96-0.48mdk
gcc-2.96-0.48mdk
gcc-c++-2.96-0.48mdk
$

This shows that the gcc C and C++ compilers version 2.96 are installed. If your system does not have the
gcc package installed, the first place to look should be your Linux distribution CDs. If a version of gcc
came bundled with your Linux distribution, the easiest thing to do is to install it from there. As with the
binutils package, the gcc package includes many libraries that must be compatible with the programs
running on the system, or problems will occur.

If you are using a UNIX system that does not have a gcc package, you can download the gcc binaries
(remember, you can’t compile source code if you don’t have a compiler) from the gcc Web site. The gcc
home page is located at http: //gcc.gnu.org.

At the time of this writing, the current version of gcc available is version 3.4.0. If the current gcc pack-
age is not available as a binary distribution for your platform, you can download an older version to get
started, and then download the complete source code distribution for the latest version.

Using gcc

54

The GNU compiler can be invoked using several different command-line formats, depending on the
source code to compile and the underlying hardware of the operating system. The generic command line
format is as follows:

gcc [-c|-S|-E] [-std=standard]
[-g] [-pgl [-Olevel]
[-Wwarn...] [-pedantic]
[-Idir...] [-Ldir...]
[-Dmacro[=defn]...] [-Umacro]
[-foption...] [-mmachine-option...]
[

-o outfile] infile...

The generic parameters are described in the following table.

Parameter Description

-C Compile or assemble code, but do not link

-S Stop after compiling, but do not assemble

-E Stop after preprocessing, but do not compile

-0 Specifies the output filename to use

-v Display the commands used at each stage of compilation
-std Specifies the language standard to use

-g Produce debugging information

The Tools of the Trade

Parameter Description

-pg Produce extra code used by gprof for profiling

-O Optimize executable code

-W Sets compiler warning message level

-pedantic Issue mandatory diagnostics listing in the C standard
-1 Specify directories for include files

-L Specify directories for library files

-D Predefine macros used in the source code

-U Cancel any defined macros

-f Specify options used to control the behavior of the compiler
-m Specify hardware-dependant options

Again, many command-line parameters can be used to control the behavior of gcc. In most cases, you
will only need to use a couple of parameters. If you plan on using the debugger to watch the program,
the -g parameter must be used. For Linux systems, the -gstabs parameter provides additional debug-
ging information in the program for the GNU debugger (discussed later in the “Using GDB” section).

To test the compiler, you can create a simple C language program to compile:

#include <stdio.h>

int main()

{
printf ("Hello, world!\n");
exit (0);

}

This simple C program can be compiled and run using the following commands:

S gcc -o ctest ctest.c

$ 1ls -al ctest

-ITWXY-Xr-X 1 rich rich 13769 Jul 6 12:02 ctest*
S ./ctest

Hello, world!

S

As expected, the gcc compiler creates an executable program file, called ctest, and assigns it the proper
permissions to be executed (note that this format does not create the intermediate object file). When the
program is run, it produces the expected output on the console.

One extremely useful command-line parameter in gcc is the -5 parameter. This creates the intermediate

assembly language file created by the compiler, before the assembler assembles it. Here’s a sample out-
put using the -s parameter:

55

Chapter 3

$ gcc -S ctest.c
$ cat ctest.s

.file "ctest.c"

.version "0l.01"
gcc2_compiled. :

.section .rodata

.LCO:

.string "Hello, world!\n"
.text

.align 16
.globl main

.type main, @function
main:

pushl %ebp

movl %esp, %ebp

subl $8, %esp

subl $12, %esp

pushl $.LCO

call printf

addl $16, %esp

subl $12, %esp

pushl S0

call exit
.Lfel:

.size main, .Lfel-main

.ident "GCC: (GNU) 2.96 20000731 (Linux-Mandrake 8.0 2.96-0.48mdk)"
$

The ctest. s file shows how the compiler created the assembly language instructions to implement
the C source code program. This is useful when trying to optimize C applications to determine how the
compiler is implementing various C language functions in instruction code. You may also notice that
the generated assembly language program uses two C functions —printf and exit. In Chapter 4,

“A Sample Assembly Language Program,” you will see how assembly language programs can easily
use the C library functions already installed on your system.

The GNU Debugger Program

Many professional programmers use the GNU debugger program (gdb) to debug and troubleshoot C
and C++ applications. What you may not know is that it can also be used to debug assembly language
programs as well. This section describes the gdb package, including how to download, install, and
use its basic features. It is used throughout the book as the debugger tool for assembly language
applications.

Downloading and installing gdb

The gdb package is often a standard part of Linux and BSD development systems. You can use the
appropriate package manager to determine whether it is installed on your system:

56

The Tools of the Trade

$ rpm -ga | grep gdb
libgdbml-1.8.0-14mdk
libgdbml-devel-1.8.0-14mdk
gdb-5.0-11mdk

s

This Mandrake Linux system has version 5.0 of the gdb package installed, along with two library pack-
ages used by gdb.

If your system does not have gdb installed, you can download it from its Web site at www.gnu.org/
software/gdb/gdb.html. At the time of this writing, the current version of gdb is 6.1.1 and is available
for download from ftp://sources.redhat.com/pub/gdb/releases in file gdb-6.1.tar.gz.

After downloading the distribution file, it can be unpacked into a working directory using the following
command:

tar -zxvf gdb-6.1.tar.gz

This creates the directory gdb-6 . 1, with all of the source code files. To compile the package, go to the
working directory, and use the following commands:

./configure
make

This compiles the source code files into the necessary library files and the gdb executable file. These can
be installed using the command make install.

Using gdb

The GNU debugger command-line program is called gdb. It can be run with several different parameters
to modify its behavior. The command-line format for gdb is as follows:

gdb [-nx] [-g] [-batch] [-cd=dir] [-f] [-b bps] [-tty=dev]
[-s symfile] [-e prog] [-se prog] [-c core] [-x cmds] [-d dir]
[prog[core|procID]]

The command-line parameters are described in the following table.

Parameter Description

-b Set the line speed of the serial interface for remote debugging
-batch Run in batch mode

-c Specify the core dump file to analyze

-cd Specify the working directory

-d Specify a directory to search for source files

Table continued on following page

57

Chapter 3

Parameter Description

-e Specify the file to execute

-f Output filename and line numbers in standard format when
debugging

-nx Do not execute commands from .gdbinit file

-q Quiet mode —don’t print introduction

-s Specify the filename for symbols

-se Specify the filename for both symbols and to execute

-tty Set device for standard input and output

-X Execute gdb commands from the specified file

To use the debugger, the executable file must have been compiled or assembled with the -gstabs
option, which includes the necessary information in the executable file for the debugger to know where
in the source code file the instruction codes relate. Once gdb starts, it uses a command-line interface to
accept debugging commands:

$ gcc -gstabs -o ctest ctest.c

$ gdb ctest

GNU gdb 5.0mdk-11mdk Linux-Mandrake 8.0

Copyright 2001 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-mandrake-linux"...

(gdb)

At the gdb command prompt, you can enter debugging commands. A huge list of commands can be
used. Some of the more useful ones are described in the following table.

Command Description

break Set a breakpoint in the source code to stop execution

watch Set a watchpoint to stop execution when a variable reaches a specific
value

info Observe system elements, such as registers, the stack, and memory

X Examine memory location

print Display variable values

58

The Tools of the Trade

Command Description

run Start execution of the program within the debugger

list List specified functions or lines

next Step to the next instruction in the program

step Step to the next instruction in the program

cont Continue executing the program from the stopped point

until Run the program until it reaches the specified source code line

(or greater)

Here’s a short example of a gdb session:

(gdb) list

1 #include <stdio.h>

2

3 int main()

4 {

5 printf ("Hello, world!\n");
6 exit (0);

7 }

(

gdb) break main

Breakpoint 1 at 0x8048496: file ctest.c, line 5.
(gdb) run

Starting program: /home/rich/palp/ctest

Breakpoint 1, main () at ctest.c:5

5 printf ("Hello, world!\n");
(gdb) next

Hello, world!

6 exit (0);

(gdb) next

Program exited normally.
(gdb) quit
S

First, the 1ist command is used to show the source code line numbers. Next, a breakpoint is created at
the main label using the break command, and the program is started with the run command. Because
the breakpoint was set to main, the program immediately stops running before the first source code
statement after main. The next command is used to step to the next line of source code, which executes
the printf statement. Another next command is used to execute the exit statement, which terminates
the application. Although the application terminated, you are still in the debugger, and can choose to
run the program again.

59

Chapter 3

The KDE Debugger

The GNU debugger is an extremely versatile tool, but its user interface leaves quite a bit to be desired.
Often, trying to debug large applications with gdb can be difficult. To fix this, several different graphical
front-end programs have been created for gdb. One of the more popular ones is the KDE debugger
(kdbg), created by Johannes Sixt.

The kdbg package uses the K Desktop Environment (KDE) platform, an X-windows graphical environ-
ment used mainly on open-source UNIX systems such as Linux, but also available on other UNIX plat-
forms. It was developed using the Qt graphical libraries, so the Qt runtime libraries must also be
installed on the system.

Downloading and installing kdbg

Many Linux distributions include the kdbg package as an extra package that is not installed by default.
You can check the distribution package manager on your Linux system to see if it is already installed, or
if it can be installed from the Linux distribution disks. On my Mandrake system, it is included in the
supplemental programs disk:

$ 1s kdbg*
kdbg-1.2.0-0.6mdk.1586.rpm
$

If the package is not included with your Linux system, you can download the source code for the kdbg
package from the kdbg Web site, http: //members.nextra.at/johsixt/kdbg.html. At the time of
this writing, the current stable release of kdbg is version 1.2.10. The current beta release is 1.9.5.

The kdbg source code installation requires that the KDE development header files be available. These
are usually included in the KDE development package with the Linux distribution and may already be
installed.

Using kdbg

60

After installing kdbg, you can use it by opening a command prompt window from the KDE desktop and
typing the kdbg command. After kdbg starts, you must select both the executable file to debug, as well
as the original source code file using either the File menu items or the toolbar icons.

The Tools of the Trade

Once the executable and source code files are loaded, you can begin the debugging session. Because
kdbg is a graphical interface for gdb, the same commands are available, but in a graphical form. You can
set breakpoints within the application by highlighting the appropriate line of source code and clicking
the stop sign icon on the toolbar (see Figure 3-1).

“iest (/home/rich/chap03/test.c) - KDbg

Eile Wiew Execution Breakpoint Window Help

Eec BHOOHOG O A Lo}
+ #include <stdio.h>

+

+int main()

i |

L printf(“"Helleo, worldlin®);
+ exit(0);
+}

active Line 5 |

Figure 3-1

If you want to watch memory or register values during the execution of the program, you can select
them by clicking the View menu item, and selecting which windows you want to view. You can also

open an output window to view the program output as it executes. Figure 3-2 shows an example of the
Registers window.

61

Ch

apter 3
¥ & foon (Mhogus ok feiaipts fiasie) = [0k I NN
.Eile View Execution Breakpoint Window Help
- _— N b ¥
Sac BEHTHGS O X Lo

+ tinclude <stdio.h>
.

+int main()

+if
&+ printf(“Helle, worldlin");
+ exit(0);

- 'Registers

CI1Register | x“alue

go'Decoded value

e ax 0x0 0

acx Oxl 1

adx 040157770 1075148656
ahw Ox401562390 1075143312
esp Oxbffffb90 Oxbffffb 90
ebp Oxbffff 98 Oxbffffb 98
esi Ox400164e0 1073833184
edi Oxbffffbed -107374287E
eip OxB0483a4 OxB80483a4
eflags Ox286 646

cs 0x23 35

Ox2b

55

43 @
43

Figure 3-2

After the program files are loaded, and the desired view windows are set, you can start the program exe-
cution by clicking the run icon button. Just as in gdb, the program will execute until it reaches the first
breakpoint. When it reaches the breakpoint, you can step through the program using the step icon button
until the program finishes.

The GNU Objdump Program

62

The GNU objdump program is another utility found in the binutils package that can be of great use to
programmers. Often it is necessary to view the instruction codes generated by the compiler in the object
code files. The objdump program will display not only the assembly language code, but the raw instruc-
tion codes generated as well.

This section describes the objdump program, and how you can use it to view the underlying instruction
codes contained within a high-level language program.

The Tools of the Trade

Using objdump

The objdump command-line parameters specify what functions the program will perform on the object
code files, and how it will display the information it retrieves. The command-line format of objdump is
as follows:

a|--archive-headers]
C|--demangle[=style]
D|--disassemble-all]
EB|-EL|--endian={big
-file-start-context]

objdump [-b bfdname|--target=bfdname]

] [-d|--disassemble]
[-z|--disassemble-zeroes]

| little }] [-f|--file-headers]
[-

g|--debugging]

e|--debugging-tags] [-h|--section-headers|--headers]
i|--infol [-j sect10n|——section:section]
1|--line-numbers] [-S|--source]

[-

[-

[-

[-

[-

[-

[-

[-

[-m mach1ne|——arch1tecture machine]
[-M optlons|——dlsassembler options=options]
[-
[-
[-
[-
[-
[-

[

p|--private- headers] [-r|--reloc]

R|——dynam1c reloc] [-s|--full-contents]
G|--stabs] [-t|--syms] [-T|--dynamic-syms]
x|--all-headers] [-w|--wide]
-start-address=address] [--stop-address=address]
-prefix-addresses] [--[no-]show-raw-insn]

--adjust-vma=offset] [-V|--version] [-H|--help]

objfile...

The command-line parameters are described in the following table.

Parameter Description

-a If any files are archives, display the archive header information
-b Specify the object code format of the object code files

-C Demangle low-level symbols into user-level names

-d Disassemble the object code into instruction code

-D Disassemble all sections into instruction code, including data
-EB Specify big-endian object files

-EL Specity little-endian object files

-f Display summary information from the header of each file

-G Display the contents of the debug sections

-h Display summary information from the section headers of each file
-i Display lists showing all architectures and object formats

5 Display information only for the specified section

63

Chapter 3

Parameter Description

-1 Label the output with source code line numbers

-m Specify the architecture to use when disassembling
P Display information specific to the object file format
T Display the relocation entries in the file

-R Display the dynamic relocation entries in the file

-s Display the full contents of the specified sections

-S Display source code intermixes with disassembled code
-t Display the symbol table entries of the files

-T Display the dynamic symbol table entries of the files
-X Display all available header information of the files
—-start-address Start displaying data at the specified address
--stop-address Stop displaying data at the specified address

The objdump program is an extremely versatile tool to have available. It can decode many different
types of binary files besides just object code files. For the assembly language programmer, the -d param-
eter is the most interesting, as it displays the disassembled object code file.

An objdump example

Using the sample C program, you can create an object file to dump by compiling the program with the
—c option:

$ gcc -c ctest.c
$ objdump -d ctest.o

ctest.o: file format elf32-i386
Disassembly of section .text:

00000000 <main>:

0: 55 push $ebp

1: 89 e5 mov %esp, $ebp

3: 83 ec 08 sub S0x8, ¥esp

6: 83 ec Oc sub S0xc, ¥esp

OF 68 00 00 00 00 push $0x0

e: e8 fc ff ff ff call f <main+0xf>
13: 83 c4 10 add $0x10, $esp
16: 83 ec Oc sub S0xc, ¥esp
19: 6a 00 push $0x0
1b: e8 fc ff ff ff call lc <main+0xlc>

64

The Tools of the Trade

The disassembled object code file created by your system may differ from this example depending on
the specific compiler and compiler version used. This example shows both the assembly language
mnemonics created by the compiler and the corresponding instruction codes. You may notice, however,
that the memory addresses referenced in the program are zeroed out. These values will not be deter-
mined until the linker links the application and prepares it for execution on the system. In this step of
the process, however, you can easily see what instructions are used to perform the functions.

The GNU Profiler Program

The GNU profiler (gprof) is another program included in the binutils package. This program is used
to analyze program execution and determine where “hot spots” are in the application.

The application hot spots are functions that require the most amount of processing time as the program
runs. Often, they are the most mathematically intensive functions, but that is not always the case.
Functions that are I/O intensive can also increase processing time.

This section describes the GNU profiler, and provides a simple demonstration that illustrates how it is
used in a C program to view how much time different functions consume in an application.

Using the profiler

As with all the other tools, gprof is a command-line program that uses multiple parameters to control
its behavior. The command-line format for gprof is as follows:

gprof -[abcDhilLsTvwxyz] 1 [-[ACeEfFInNOpPgQZ] [name]]
-I dirs] [-d[num]] [-k from/to]
-m min-count] [-t table-length]

--[no-Jannotated-source[=name]]
--[no-]exec-counts[=name]]
-

[

[

[

[

[

[no-]flat-profile[=name]] [--[no-]graph[=name]]
[--[no-]time=name] [--all-lines] [--brief]

[--debug[=level]] [--function-ordering]

[--file-ordering] [--directory-path=dirs]

[--display-unused-functions] [--file-format=name]

[--file-info] [--help] [--line] [--min-count=n]
[--no-static] [--print-path] [--separate-files]

[--static-call-graph] [--sum] [--table-length=len]
[--traditional] [--version] [--width=n]

[--ignore-non-functions] [--demangle[=STYLE]]

[-—-no-demangle] [image-file] [profile-file ...]

This alphabet soup of parameters is split into three groups:

Q Output format parameters
Q Analysis parameters

Q Miscellaneous parameters

65

Chapter 3

The output format options, described in the following table, enable you to modify the output produced
by gprof.

Parameter Description

-A Display source code for all functions, or just the functions specified

b Don’t display verbose output explaining the analysis fields

-C Display a total tally of all functions, or only the functions specified

-i Display summary information about the profile data file

-1 Specifies a list of search directories to find source files

-] Do not display annotated source code

-L Display full pathnames of source filenames

P Display a flat profile for all functions, or only the functions specified

-P Do not print a flat profile for all functions, or only the functions
specified

-q Display the call graph analysis

-Q Do not display the call graph analysis

-y Generate annotated source code in separate output files

-Z Do not display a total tally of functions and number of times called

—function-reordering Display suggested reordering of functions based on analysis

--file-ordering Display suggested object file reordering based on analysis

-T Display output in traditional BSD style

-w Set the width of output lines

-X Every line in annotated source code is displayed within a function

-—-demangle C++ symbols are demangled when displaying output

The analysis parameters, described in the following table, modify the way gprof analyzes the data con-
tained in the analysis file.

Parameter Description

-a Does not analyze information about statistically declared (private)
functions

-c Analyze information on child functions that were never called in the
program

66

The Tools of the Trade

Parameter Description

-D Ignore symbols that are not known to be functions (only on Solaris
and HP OSs)

-k Don’t analyze functions matching a beginning and ending symspec

-1 Analyze the program by line instead of function

-m Analyze only functions called more than a specified number of times

-n Analyze only times for specified functions

-N Don’t analyze times for the specified functions

-Z Analyze all functions, even those that were never called

Finally, the miscellaneous parameters, described in the following table, are parameters that modify the
behavior of gprof, but don't fit into either the output or analysis groups.

Parameter Description

-d Put gprof in debug mode, specifying a numerical debug level
-O Specify the format of the profile data file

-S Force gprof to just summarize the data in the profile data file
-V Print the version of gprof

In order to use gprof on an application, you must ensure that the functions you want to monitor are
compiled using the -pg parameter. This parameter compiles the source code, inserting a call to the
mcount subroutine for each function in the program. When the application is run, the mcount subroutine
creates a call graph profile file, called gmon. out, which contains timing information for each function in
the application.

Be careful when running the application, as each run will overwrite the gmon . out file. If you want to
take multiple samples, you must include the name of the output file on the gprof command line and
use different filenames for each sample.

After the program to test finishes, the gprof program is used to examine the call graph profile file to
analyze the time spent in each function. The gprof output contains three reports:

Q Aflat profile report, which lists total execution times and call counts for all functions
Q Alisting of functions sorted by the time spent in each function and its children

Q Alisting of cycles, showing the members of the cycles and their call counts

By default, the gprof output is directed to the standard output of the console. You must redirect it to a
file if you want to save it.

67

Chapter 3

A profile example

To demonstrate the gprof program, you must have a high-level language program that uses functions to
perform actions. I created the following simple demonstration program in C, called demo . ¢, to demon-
strate the basics of gprof:

#include <stdio.h>

void functionl ()
{
int 1, j;
for(i=0; i <100000; i++)
jo+=1i;
}

void function2 ()

{
int 1, j;
functionl () ;
for(i=0; i < 200000; i++)
jo=1;
}
int main()
{
int 1, 3;
for (i = 0; i <100; i++)
functionl () ;

for(i = 0; 1<50000; i++)
function2 () ;
return 0;

This is about as simple as it gets. The main program has two loops: one that calls functionl () 100
times, and one that calls function2 () 50,000 times. Each of the functions just performs simple loops,
although function2 () also calls functionl () every time it is called.

The next step is to compile the program using the -pg parameter for gprof. After that the program can
be run:

$ gcc -o demo demo.c -pg
$./demo
$

When the program finishes, the gmon. out call graph profile file is created in the same directory. You can
then run the gprof program against the demo program, and save the output to a file:

$ 1ls -al gmon.out

-rw-r--r--— 1 rich rich 426 Jul 7 12:39 gmon.out
$ gprof demo > gprof.txt

$

68

The Tools of the Trade

Notice that the gmon. out file was not referenced in the command line, just the name of the executable
program. gprof automatically uses the gmon. out file located in the same directory. This example redi-
rected the gprof output to a file named gprof . txt. The resulting file contains the complete gprof
report for the program. Here’s what the flat profile section looked like on my system:

% cumulative self self total

time seconds seconds calls wus/call wus/call name
67.17 168.81 168.81 50000 3376.20 5023.11 function2
32.83 251.32 82.51 50100 1646.91 1646.91 functionl

This report shows the total processor time and times called for each individual function that was called
by main. As expected, function2 took the majority of the processing time.

The next report is the call graph, which shows the breakdown of time by individual functions, and how
the functions were called:

index % time self children called name
<spontaneous>
[1] 100.0 0.00 251.32 main [1]
168.81 82.35 50000/50000 function2 [2]
0.16 0.00 100/50100 functionl [3]
168.81 82.35 50000/50000 main [1]
[21] 99.9 168.81 82.35 50000 function2 [2]
82.35 0.00 50000/50100 functionl [3]
0.16 0.00 100/50100 main [1]
82.35 0.00 50000/50100 function2 [2]
[3] 32.8 82.51 0.00 50100 functionl [3]

Each section of the call graph shows the function analyzed (the one on the line with the index number),
the functions that called it, and its child functions. This output is used to track the flow of time through-
out the program.

A Complete Assembly Development System

Now that you know all the pieces needed for an assembly language development environment, it’s time
to put them all together. One of the best environments for using GNU utilities is the Linux operating sys-
tem. Many freely available Linux distributions contain all of the GNU utilities presented in this chapter
already installed. This section describes some of the basics of the Linux system, along with the GNU
utilities necessary for creating an assembly language development environment.

The basics of Linux

If you are new to the Linux environment, you may need some background information before trying out
a Linux distribution. When people talk about the Linux operating system, they are really talking about
an entire suite of programs, not all of them necessarily related to Linux. The key to building a Linux

69

Chapter 3

system is understanding the components that comprise the system, and knowing where and how
to get them.

Linus Torvalds is credited with creating and guiding the development of the Linux operating system
kernel. The operating system kernel is the software that interacts with the hardware and handles the
low-level functions of an operating system, such as file access control, and handling memory and hard-
ware interfaces. Just loading a Linux kernel on a computer would be a pretty boring experience. You
need additional programs to interact with the devices to really do anything.

This is where the GNU project comes in. The GNU project has developed many applications over the
years that help system administrators and programmers with any UNIX-type operating system, with
Linux being one of the more popular.

When you download a Linux distribution, what you are downloading is the Linux kernel, bundled
with a set of utilities to perform the desired functions for the type of system you want to build. Most of
the standard UNIX functions have been implemented by the GNU project. Depending on what you
want your particular Linux system do to, you may or may not want to install all of the available GNU
programs.

After you build your base Linux system, you will want to create your specific development environ-
ment. When you decide which tools you want to include on your system, first check to see if they are
available on the distribution disks included with the Linux distribution. This is by far the easiest way to
install packages, especially if you are using a distribution that includes an automated package manager,
such as Red Hat rpm or Debian dpkg.

If you do not (or cannot) install a complete Linux system, the next best thing is to use a bootable CD dis-
tribution. With a bootable CD distribution, the entire Linux system is stored on a bootable CD. To run
Linux, just place the CD in your computer and reboot. The Linux system will load in memory, and create
a virtual disk in memory. The operating system on the hard drive is never touched. When you are fin-
ished, just take the CD out and reboot from the hard drive. Most bootable Linux CD distributions do an
excellent job of auto-detecting workstation hardware, such as network cards, sound cards, and various
graphics cards.

One of my favorite bootable Linux CD distributions for development is MEPIS Linux. The MEPIS Linux
distribution is based on the Debian Linux, but comes as a bootable CD that can also be easily installed on
your hard drive if you choose to do so. It is one of the easiest ways to install Linux on an existing work-
station system.

Another reason MEPIS is one of my favorites is that, at the time of this writing, the MEPIS bootable CD
contains a complete development environment, including gas, 14, gcc, gdb, gprof, and even kdbg. By

just booting from the MEPIS CD, you have an automatic Linux assembly language development system!

The following sections describe how to download and use the MEPIS Linux distribution.

Downloading and running MEPIS

The MEPIS Web site is located at www.mepis. org. From that page, you can purchase a CD, buy a pre-
mium download subscription, or go to a free download mirror site. At the time of this writing, the cur-
rent full release version of MEPIS is 2003-10, patch 2, and the current beta version is 2004-b05.

70

The Tools of the Trade

At the time of this writing, there is also a separate version of MEPIS called Simply-MEPIS. This ver-
sion includes the compiler, assembler, and linker software but does not include the gdb debugger. This
must be downloaded and installed separately.

The full version MEPIS CD is downloaded as two separate . iso format files:

Q mepis-2003-10.02.cdl.iso contains the main MEPIS software.

0 mepis-2003-10.02.cd2.1iso contains additional packages in Debian package format.

If you plan on downloading the distribution files, you might want to find a high-speed Internet connec-
tion, as the file is 694MB in size. After downloading the . iso files, you must have a workstation with a
CD burner, and software that allows burning CDs from . iso files. After burning the . iso files to CDs,
you are ready to start MEPIS Linux.

The first . iso file contains the complete operating system that can be run from the CD. First ensure that
your workstation allows booting from CDs (an option that is set in the system BIOS). When you boot
from the MEPIS Linux CD, a boot screen appears, asking for any special boot parameters. In most cases,
you can simply press Enter to continue the boot process. If you have a video card that is not supported
by MEPIS, you can enter boot prompt parameters. See the MEPIS Web site for specific details.

After the system boots, the KDE desktop login screen appears, with two preconfigured user IDs, demo
and root. You can log in as either account, but it is safest to use the demo account. The password for
demo is demo, and the password for root is root.

Your new development system

When you log into the MEPIS system, you will see the KDE desktop environment displayed. This is sim-
ilar to a Microsoft Windows desktop environment, with desktop icons, a taskbar, and a Start button
(although it is not called Start on the KDE desktop). You can open a command prompt session by click-
ing the shell icon on the taskbar. You can also open an editor session using any one of several different
editors from the Editors menu item.

When creating the program file, be careful to save the file as plain text. MEPIS includes some fancy
word processing editors, such as OpenOffice Writer, which can save documents in a special binary for-
mat. The GNU assembler is not able to read these formats.

After creating your assembly language program text file, you can use the as and 1d commands from a
command prompt session to assemble and link the program. If you are creating high-level language pro-
grams, MEPIS also includes the gcc compiler for C and C++ applications.

When it is time for debugging, MEPIS includes the gdb and kdbg programs. The gdb program can be
accessed from a command prompt session, while the kdbg program is available on the menu under the
Development section.

The only drawback to running a development system from a bootable CD is when it is time to save your

work. By default, the system uses RAM memory as a virtual disk. Any program stored under the default
file system is only stored in memory. The next time you boot from the CD, the files will be gone.

71

Chapter 3

To solve this problem, you should have some type of media available that MEPIS can access.
Unfortunately, at the time of this writing, MEPIS is unable to write data to hard drives using the NTFS
format (commonly used in Windows 2000 and XP workstations). If you have a hard drive formatted
using the FAT32 format, MEPIS will be able to write to there. Also, MEPIS can write files to a floppy
disk, and to most USB flash drives. As a last resort, if your workstation is on a local area network (LAN),
you can always copy the files over by either using the FTP protocol or mounting a Windows shared
drive to the system. My favorite method is to use a Windows share on a separate computer. It’s just as
simple as mapping in the Windows world.

Summary

72

Every programmer needs a development environment in which to create application programs.
Unfortunately, assembly language programmers must often create their own development environment.
There are many different pieces to bring together to create the perfect development environment.

At a minimum, you will need a text editor, an assembler package, and a linker package (usually the
assembler and linker packages come bundled together). The assembler is used to convert the assembly
language code into instruction code for the specific processor used to run the application. The linker is
then used to convert the raw instruction code into an executable program by combining any necessary
libraries, and resolving any memory references necessary for memory storage.

Besides the assembler and linker, it is often useful to have a debugger and an object code disassembler
available. The debugger enables you to step through your program, watching how each instruction
modifies registers and memory locations. The disassembler enables you to view the instruction codes in
an object code file generated by either an assembly language program or a high-level language program.

If you plan on using high-level languages with your assembly code, you will also need a compiler to
build the executable code from the high-level language source code. Many compilers also have the capa-
bility to show the instruction codes that are generated from the source code, enabling you to see what is
really happening from the source code instructions. This is where assembly language programming can
really come in handy. By examining the generated instruction codes, you can sometimes determine that
there is a better way to implement a function than the way the compiler did, and then do it yourself.

Another final tool that is useful for programmers is a profiler. The profiler is used to analyze the perfor-
mance of an application. By examining which functions consume the most processing time, you can
determine which ones are worth trying to optimize to increase the performance of the application.

Although many versions of these tools are available, this book uses the tools developed by the GNU pro-
ject. These tools are all freely available and run on most any UNIX system. Most of the core tools are
available in the GNU binutils package. The assembler, as, the linker, 14, the object code disassembler,
objdump, and the profiler, gprof, are all contained in the binutils package. The GNU debugger is
called gdb, and the GNU compiler is called gcc.

Now that your development environment is complete, it’s time to start doing some assembly language
programming. The next chapter describes how to use the tools to create a sample assembly language
program.

A Sample Assembly
Language Program

With all of your development tools in order, it’s time to start learning about assembly language
programming. Assembly language programs use a common template and format (specific to the
assembler used), which you can develop and use for all of your applications.

This chapter walks you through a basic assembly language program template for the GNU assem-
bler. The first section of the chapter describes the common items found in assembly language pro-
grams, and how they can be used to define a common template. The next section shows a sample
program, and how to assemble and run it. Next you will learn how to debug the sample program
using the GNU debugger. The last section of this chapter demonstrates how to incorporate C
library functions into your assembly language programs.

The Parts of a Program

As shown in Chapter 1, “What Is Assembly Language?,” the assembly language program consists
of defined sections, each of which has a different purpose. The three most commonly used sections
are as follows:

O The data section

QO The bss section

QO The text section

The text section is required in all assembly language programs. It is where the instruction codes
are declared within the executable program. The data and bss sections are optional, but often used
within a program. The data section declares data elements that are declared with an initial value.
These data elements are used as variables within the assembly language program. The bss section

Chapter 4

declares data elements that are instantiated with a zero (or null) value. These data elements are most
often used as buffer areas within the assembly language program.

The following sections describe how to declare the different sections in an assembly language program
written for the GNU assembler, which is the assembler used throughout this book.

Defining sections

The GNU assembler declares sections using the . section declarative statement. The . section state-
ment takes a single argument, the type of section it is declaring. Figure 4-1 shows the layout of an assem-
bly language program.

.section.data

.section.bss

.section.text

Figure 4-1

Figure 4-1 demonstrates the normal way the sections are placed in the program. The bss section should
always be placed before the text section, but the data section can be moved to follow the text section,
although that is not the standard. Besides being functional, your assembly language programs should
also be easily readable. Keeping all of the data definitions together at the beginning of the source code
makes it easier for other programmers to pick up your work and understand it.

Defining the starting point

When the assembly language program is converted to an executable file, the linker must know what the
starting point is in your instruction code. For simple programs with only a single instruction path, find-
ing the starting point is not usually a problem. However, in more complex programs that use several
functions scattered throughout the source code, finding where the program starts can be an issue.

74

A Sample Assembly Language Program

To solve this problem, the GNU assembler declares a default label, or identifier, that should be used for
the entry point of the application. The _start label is used to indicate the instruction from which the
program should start running. If the linker cannot find this label, it will produce an error message:

$ 1d -o badtest badtest.o
1d: warning: cannot find entry symbol _start; defaulting to 08048074
$

As you can see from the linker output, if the linker cannot find the _start label, it will attempt to find
the starting point of the program, but for complex programs there is no guarantee that it will guess
correctly.

You can use a different label besides _start as the starting point. You can use the -e parameter of the
linker to define what the new starting point is called.

Besides declaring the starting label in the application, you also need to make the entry point available
for external applications. This is done with the .globl directive.

The .globl directive declares program labels that are accessible from external programs. If you are writ-
ing a bunch of utilities that are being used by external assembly or C language programs, each function
section label should be declared with a .globl directive.

Armed with this information, you can create a basic template for all your assembly language programs.
The template should look something like this:

.section.data

< initialized data here>
.section .bss

< uninitialized data here>
.section .text
.globl _start

_start:

<instruction code goes here>

With this template in hand, you are ready to start coding assembly language programs. The next section
walks through a simple application that shows how to build an application from the assembly language
program source code.

Creating a Simple Program

Now it is time to create a simple assembly language application to demonstrate how all of the pieces fit
together. To start off, a simple application that centers on a single instruction code is created. The CPUID
instruction code is used to gather information about the processor on which the program is running. You
can extract vendor and model information from the processor and display it for your customers to see.

75

Chapter 4

The following sections describe the CPUID instruction and show how to implement an assembly lan-
guage program to utilize it.

The CPUID instruction

The cPUID instruction is one assembly language instruction that is not easily performed from a high-
level language application. It is a low-level instruction that queries the processor for specific informa-
tion, and returns the information in specific registers.

The cPUID instruction uses a single register value as input. The EAX register is used to determine what
information is produced by the CPUID instruction. Depending on the value of the EAX register, the CPUID
instruction will produce different information about the processor in the EBX, ECX, and EDX registers.
The information is returned as a series of bit values and flags, which must be interpreted to their proper
meaning.

The following table shows the different output options available for the CPUID instruction.

EAX Value CPUID Output

0 Vendor ID string, and the maximum CPUID option value
supported

1 Processor type, family, model, and stepping information

2 Processor cache configuration

3 Processor serial number

4 Cache configuration (number of threads, number of cores, and
physical properties)

5 Monitor information

80000000h Extended vendor ID string and supported levels

80000001h Extended processor type, family, model, and stepping information

80000002h - 80000004h Extended processor name string

The sample program created in this chapter utilizes the zero option to retrieve the simple Vendor ID
string from the processor. When the value of zero is placed in the EAX register, and the CPUID instruction
is executed, the processor returns the Vendor ID string in the EBX, EDX , and ECX registers as follows:

0 EBX contains the low 4 bytes of the string.
0 EDX contains the middle 4 bytes of the string.

0 ECX contains the last 4 bytes of the string.

The string values are placed in the registers in little-endian format; thus, the first part of the string is
placed in the lower bits of the register. Figure 4-2 shows how this works.

76

A Sample Assembly Language Program

31 23 15 7 0

EBX

register byte4 byte3 byte2 bytel

31 23 15 7 0

EDX

register byte8 byte7 byte6 byte5

31 23 15 7 0

ECX

register byte12 byte11 byte10 byte9

Figure 4-2

The sample program takes the register values and displays the information to the customer in a human-
readable format. The next section presents the sample program.

Not all processors in the IA-32 platform utilize the CPUID instruction the same way. In a real applica-
tion, you should perform a few tests to ensure that the processor supports the CPUID instruction. To
keep things simple, the example program presented in this chapter does not perform any of these tests.
It’s possible that you may be using a processor that does not support the CPUID instruction, although
most modern processors do support it (including Intel Pentium processors, Cyrix processors, and AMD
processors).

The sample program

Armed with your knowledge about how the CPUID instruction works, it’s time to start writing a simple
program to utilize that information. This program is a simple application to check the Vendor ID string
that is produced by the CPUID instruction. Here’s the sample program, cpuid.s:

#cpuid.s Sample program to extract the processor Vendor ID
.section .data
output:

.ascii "The processor Vendor ID is 'XXXXXXXXXXxX'\n"
.section .text
.globl _start
_start:

movl $0, %eax

cpuid

77

Chapter 4

78

movl Soutput, %edi
movl %ebx, 28 (%edi)
movl %edx, 32 (%edi)
movl %ecx, 36(%edi)
movl $4, %eax

movl $1, %ebx

movl Soutput, %ecx
movl $42, %edx

int $0x80

movl $1, %eax

movl $0, %ebx

int $0x80

This program uses quite a few different assembly language instructions. For now, don’t worry too much
about what they are; that will be described in detail in subsequent chapters. For now, concentrate on
how the instructions are placed in the program, the flow of how they operate, and how the source code
file is converted into an executable program file. So that you're not totally lost, here’s a brief explanation
of what’s going on in the source code.

First, in the data section, a string value is declared:

output:
.ascii "The processor Vendor ID is 'XXXXXXXXXXxX'\n"

The .ascii declarative is used to declare a text string using ASCII characters. The string elements are
predefined and placed in memory, with the starting memory location denoted by the label output. The
x’s are used as placeholders in the memory area reserved for the data variable. When the vendor ID
string is extracted from the processor, it will be placed in the data at those memory locations.

You should recognize the next section of the program from the template. It declares the instruction code
section, and the normal starting label of the application:

.section .text
.globl _start
_start:

The first thing the program does is load the EAX register with a value of zero, and then run the CPUID
instruction:

movl $0, %eax
cpuid

The zero value in EAX defines the CPUID output option (the Vendor ID string in this case). After the
CPUID instruction is run, you must collect the response that is divided up between the three output
registers:

movl Soutput, %edi
movl %ebx, 28 (%edi)
movl %edx, 32 (%edi)
movl %ecx, 36 (%edi)

A Sample Assembly Language Program

The first instruction creates a pointer to use when working with the output variable declared in mem-
ory. The memory location of the output label is loaded into the EDI register. Next, the contents of the
three registers containing the Vendor ID string pieces are placed in the appropriate locations in the data
memory, based on the EDI pointer. The numbers outside the parentheses represent the location relative
to the output label where the data is placed. This number is added to the address in the EDI register to
determine what address the register’s value is written to. This process replaces the x’s that were used as
placeholders with the actual Vendor ID string pieces (note that the Vendor ID string was divided into the
registers in the strange order EBX, EDX, and ECX).

When all of the Vendor ID string pieces are placed in memory, it’s time to display the information:

movl $4, %eax
movl $1, %ebx
movl Soutput, %ecx
movl $42, %edx
int $0x80

This program uses a Linux system call (int $0x80) to access the console display from the Linux kernel.
The Linux kernel provides many preset functions that can be easily accessed from assembly applica-
tions. To access these kernel functions, you must use the int instruction code, which generates a soft-
ware interrupt, with a value of 0x80. The specific function that is performed is determined by the value
of the EAX register. Without this kernel function, you would have to send each output character yourself
to the proper I/O address of the display. The Linux system calls are a great time-saver for assembly lan-
guage programmers.

The complete list of Linux system calls, and how to use them, is discussed in Chapter 12, “Using Linux
System Calls.”

The Linux write system call is used to write bytes to a file. Following are the parameters for the write
system call:

Q EAX contains the system call value.

0 EBX contains the file descriptor to write to.

0 ECX contains the start of the string.

0 EDX contains the length of the string.
If you are familiar with UNIX, you know that just about everything is handled as a file. The standard

output (STDOUT) represents the display terminal of the current session, and has a file descriptor of 1.
Writing to this file descriptor displays the information on the console screen.

The bytes to display are defined as a memory location to read the information from, and the number of
bytes to display. The ECX register is loaded with the memory location of the output label, which defines
the start of the string. Because the size of the output string is always the same, we can hard-code the size
value in the EDX register.

After the Vendor ID information is displayed, it’s time to cleanly exit the program. Again, a Linux sys-

tem call can help. By using system call 1 (the exit function), the program is properly terminated, and
returns to the command prompt. The EBX register contains the exit code value returned by the program

79

Chapter 4

to the shell. This can be used to produce different results in a shell script program, depending on
situations within the assembly language program. A value of zero indicates the program executed
successfully.

Building the executable

With the assembly language source code program saved as cpuid.s, you can build the executable pro-
gram using the GNU assembler and GNU linker as follows:

$ as -o cpuid.o cpuid.s
$ 1d -o cpuid cpuid.o
$

The output from these commands is not too exciting (unless of course you had some typos in your code).
The first step uses the as command to assemble the assembly language source code into the object code
file cpuid. o. The second step uses 14 to link that object code file into the executable file cpuid.

If you did have a typo in the source code, the assembler will indicate the line in which the typo is
located:

$ as -o cpuid.o cpuid.s
cpuid.s: Assembler messages:
cpuid.s:15: Error: no such instruction: "“mavl %edx,32(%edi)'

$

Running the executable

After the linker generates the executable program file, it is ready to be run. Here’s a sample output from
my MEPIS system running on a Pentium 4 processor:

$./cpuid
The processor Vendor ID is 'GenuinelIntel'
$

Excellent! The program ran as expected! One of the benefits of Linux is that some distributions will run
on most any old piece of junk you might have sitting around. Here’s the output from an old 200MHz PC
with a Cyrix 6x86MX processor on which I ran Mandrake Linux 6.0:

$./cpuid
The processor Vendor ID is 'CyrixInstead'
$

You gotta love the humor of system engineers.

Assembling using a compiler

Because the GNU Common Compiler (gcc) uses the GNU assembler to compile C code, you can also
use it to assemble and link your assembly language program in a single step. While this is not a common
method to use, it is available when necessary.

80

A Sample Assembly Language Program

There is one problem when using gcc to assemble your programs. While the GNU linker looks for the
_start label to determine the beginning of the program, gcc looks for the main label (you might recog-
nize that from C or C++ programming). You must change both the _start label and the .globl direc-
tive defining the label in your program to look like the following:

.section .text
.globl main
main:

After doing that, it is a snap to assemble and link programs:

S gcc -o cpuid cpuid.s

$./cpuid
The processor Vendor ID is 'GenuinelIntel'
$

Debugging the Program

In this simple example, unless you introduced some typing errors in the source code, the program
should have run with the expected results. Unfortunately, that is not always the case in assembly lan-
guage programming.

In more complicated programes, it is easy to make a mistake when assigning registers and memory loca-
tions, or trying special instruction codes to handle complex data issues. When this happents, it is good to
have a debugger handy to step through the program and watch how the data is handled.

This section shows how to use the GNU debugger to walk through the sample program, watching how
the registers and memory location are changed throughout the process.

Using gdb

In order to debug the assembly language program, you must first reassemble the source code using the
-gstabs parameter:

$ as -gstabs -o cpuid.o cpuid.s
$ 1d -o cpuid cpuid.o
$

As with the first time it was assembled, the source code assembles with no error or warning messages.
By specifying the -gstabs parameter, extra information is assembled into the executable program file to
help gdb walk through the source code. While the executable program file created with the -gstabs
parameter still runs and behaves just like the original program, it is not a wise idea to use the -gstabs
parameter unless you are specifically debugging an application.

Because the -gstabs parameter adds additional information to the executable program file, the result-
ing file becomes larger than it needs to be just to run the application. For this example program, assem-

bling without the -gstabs parameter produces the following file:

-TWXY-Xr-X 1 rich rich 771 2004-07-13 07:32 cpuid

81

Chapter 4

When assembling with the -gstabs parameter, the program file becomes the following:
—ITWXr-XY-X 1 rich rich 1099 2004-07-13 07:20 cpuid

Notice that the file size went from 771 bytes to 1,099 bytes. Although the difference is trivial for this
example, imagine what happens with a 10,000-line assembly language program! Again, it is best to not
use the debugging information if it is not necessary.

Stepping through the program

Now that the executable program file contains the necessary debugging information, you can run the
program within gdb:

$ gdb cpuid

GNU gdb 6.0-debian

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i1386-linux"...

(gdb)

The GNU debugger starts, with the program loaded into memory. You can run the program from within
gdb using the run command:

(gdb) run
Starting program: /home/rich/palp/chap04/cpuid
The processor Vendor ID is 'GenuinelIntel'

Program exited normally.
(gdb)

As you can see from the output, the program ran within the debugger just as it did from the command
line. That’s not especially exciting. Now it’s time to freeze the program as it starts, and step through each
line of source code individually.

To do that, you must set a breakpoint. Breakpoints are places in the program code where you want the
debugger to stop running the program and let you look at things. There are several different options you
can use when setting a breakpoint. You can choose to stop execution at any of the following:

a Alabel

O Aline number in the source code

0 Adata value when it reaches a specific value

Q A function after it is performed a specific number of times

For this simple example, we will set a breakpoint at the beginning of the instruction codes, and watch
the program as it progresses through the source code.

82

A Sample Assembly Language Program

When specifying breakpoints in assembly language programs, you must specify the location relative to
the nearest label. Because this sample program has only one label in the instruction code section, every
breakpoint must be specified from _start. The format of the break command is

break *label+offset

where label is the label in the source code to reference, and of fset is the number of lines from the
label where execution should stop.

To set a breakpoint at the first instruction, and then start the program, you would use the following
commands:

(gdb) break *_start

Breakpoint 1 at 0x8048075: file cpuid.s, line 11.
(gdb) run

Starting program: /home/rich/palp/chap04/cpuid
The processor Vendor ID is 'GenuineIntel'

Program exited normally.
(gdb)

The breakpoint was specified using the *_start parameter, which specifies the first instruction code
after the _start label. Unfortunately, when the program is run, it ignores the breakpoint, and runs
through the entire program. This is a well-known bug in the current version of gdb. It has been around
for a while, but hopefully it will be fixed soon.

To work around this problem, you have to include a dummy instruction as the first instruction code ele-
ment after the _start label. In assembly, the dummy instruction is called NOP, for no operation.

If you modify the cpuid. s source code by adding a NOP instruction immediately after the _start label,
it should look like this:

_start:
nop
movl $0, %eax
cpuid

After adding the NOP instruction, you can create a breakpoint at that location, signified as _start+1.
Now, after assembling with the -gstabs parameter (and don’t forget to link the new object code file),
you can try out the debugger again:

(gdb) break *_start+1l

Breakpoint 1 at 0x8048075: file cpuid.s, line 12.
(gdb) run

Starting program: /home/rich/palp/chap04/cpuid

Breakpoint 1, _start () at cpuid.s:12

12 movl $0, %eax
Current language: auto; currently asm
(gdb)

83

Chapter 4

Perfect! The program started and then paused at (what use to be) the first instruction code. Now you can
step your way through the program using either the next or step commands:

(gdb) next

_start () at cpuid.s:13

13 cpuid

(gdb) next

_start () at cpuid.s:14

14 movl Soutput, %edi
(gdb) step

_start () at cpuid.s:15

15 movl %ebx, 28 (%edi)
(gdb) step

_start () at cpuid.s:16

16 @code last w/screen:movl %$edx, 32 (%edi)

Each next or step command executes the next line of source code (and tells you what line number that
is). Once you have walked through the section you were interested in seeing, you can continue to run
the program as normal using the cont command:

(gdb) cont
Continuing.
The processor Vendor ID is 'GenuinelIntel'

Program exited normally.
(gdb)

The debugger picks up from where it was stopped and finishes running the program as normal.

While it is good to walk through the program slowly, it is even better to be able to examine data ele-
ments as you are walking. The debugger provides a method for you to do that, as described in the next
section.

Viewing the data

Now that you know how to stop the program at specific locations, it’s time to examine the data elements
at each stop. Several different gdb commands are used to examine the different types of data elements.

The two most common data elements to examine are registers and memory locations used for variables.
The commands used for displaying this information are shown in the following table.

Data Command Description

info registers Display the values of all registers

print Display the value of a specific register or variable from the
program

X Display the contents of a specific memory location

84

A Sample Assembly Language Program

The info registers command is great for seeing how all of the registers are affected by an instruction:

(gdb) s

_start () at cpuid.s:13

13 cpuid

(gdb) info registers

eax 0x0 0
ecx 0x0 0
edx 0x0 0
ebx 0x0 0
esp 0xbfff£d70
ebp 0x0 0x0
esi 0x0 0
edi 0x0 0
eip 0x804807a
eflags 0x346 838
cs 0x23 35
ss 0x2b 43
ds 0x2b 43
es 0x2b 43
fs 0x0 0
gs 0x0 0
(gdb) s

_start () at cpuid.s:14

14 movl Soutput, %edi
(gdb) info registers

eax 0x2 2
ecx 0x6c65746e
edx 0x49656e69
ebx 0x756e6547
esp Oxbfff£fd70
ebp 0x0 0x0
esi 0x0 0
edi 0x0 0
eip 0x804807c¢c
eflags 0x346 838
cs 0x23 35
ss 0x2b 43
ds 0x2b 43
es 0x2b 43
fs 0x0 0
gs 0x0 0
(gdb)

Oxbf£££d470

0x804807a

1818588270
1231384169
1970169159
Oxbff££d470

0x804807c

This output shows that before the CPUID instruction is executed, the EBX, ECX, and EDX registers all con-

tain zero. After the CPUID instruction, they contain the values from the Vendor ID string.

The print command can also be used to display individual register values. Including a modifier can

modify the output format of the print command:

0 print/d to display the value in decimal

Q print/t to display the value in binary

Q print/x to display the value in hexadecimal

85

Chapter 4

An example of the print command would be the following:

(gdb) print/x S$Sebx
$9 = 0x756e6547
(gdb) print/x Sedx
$10 = 0x49656e69
(gdb) print/x Secx
$11 = 0x6c65746e
(gdb)

The x command is used to display the values of specific memory locations. Similar to the print com-
mand, the x command output can be modified by a modifier. The format of the x command is

x/nyz
where n is the number of fields to display, y is the format of the output, and can be

Q ¢ for character
O dfor decimal

Q x for hexadecimal
and z is the size of the field to be displayed:

Q bforbyte
Q hfor 16-bit word (half-word)
Q wfor 32-bit word

The following example uses the x command to display the memory locations at the output label:

(gdb) x/42cb &output

0x80490ac <output>:84 'T' 104 'h' 101 'e' 32 ' ' 112 'p' 114 'r' 111 '0'99 'c'

0x80490b4 <output+8>:101 'e' 115 's' 115 's' 111 'o' 114 'r' 32 ' ' 86 'V' 101 'e'
0x80490bc <output+16>:110 'n' 100 'd' 111 'o' 114 'r' 32 ' ' 73 'I' 68 'D' 32 ' '
0x80490c4 <output+24>:105 'i' 115 's' 32 ' ' 39 '\'' 71 'G' 101 'e' 110 'n'117 'u'

0x80490cc <output+32>:105 'i' 110 'n' 101 'e' 73 'I' 110 'n' 116 't' 101 'e'108 '1'
0x80490d4 <output+40>:39 '\'' 10 '\n'
(gdb)

This command displays the first 42 bytes of the output variable (the ampersand sign is used to indicate
that it is a memory location) in character mode (which also shows the decimal values as well). This fea-
ture is invaluable when tracking instructions that manipulate memory locations.

Using C Library Functions in Assembly

86

The cpuid.s program used the Linux system calls to display the Vendor ID string information on the
console. There are other ways to perform this function without using the system calls.

A Sample Assembly Language Program

One method is to use the standard C library functions that are well known to C programmers. It is easy
to tap into that resource to utilize many common C functions.

This section describes how to utilize C library functions within your assembly language programs. First,
the common printf C function is described, and a new version of the cpuid. s program is shown using
the printf function. Then, the next section shows how to assemble and link programs that use C library
functions.

Using printf

The original cpuid. s program used Linux system calls to display the results. If you have the GNU C
compiler installed on your system, you can just as easily use the common C functions that you are prob-
ably already familiar with.

The C libraries contain many of the functions that are common to C programs, such as printf and
exit. For this version of the program, the Linux system calls are replaced with equivalent C library
calls. Here’s the cpuid2. s program:

#cpuid2.s View the CPUID Vendor ID string using C library calls
.section .data
output:
.asciz "The processor Vendor ID is '%s'\n"
.section .bss
.lcomm buffer, 12
.section .text
.globl _start
_start:
movl $0, %eax
cpuid
movl Sbuffer, %edi
movl %ebx, (%edi)
movl %edx, 4(%edi)
movl %ecx, 8(%edi)
pushl Sbuffer
pushl Soutput
call printf
addl $8, %esp
pushl $0
call exit

The printf function uses multiple input parameters, depending on the variables to be displayed. The
first parameter is the output string, with the proper codes used to display the variables:

output:
.asciz "The processor Vendor ID is '%s'\n"

Notice that this uses the .asciz directive instead of .ascii. The printf function expects a null-

terminated string as the output string. The . asciz directive adds the null character to the end of the
defined string.

87

Chapter 4

The next parameter used is the buffer that will contain the Vendor ID string. Because the value of the
buffer does not need to be defined, it is declared in the bss section as a 12-byte buffer area using the
. lcomm directive:

.section .bss
.lcomm buffer, 12

After the CPUID instruction is run, the registers containing the Vendor ID string pieces are placed in the
buffer variable in the same way that they were in the original cpuid.s program.

To pass the parameters to the printf C function, you must push them onto the stack. This is done using
the PUSHL instruction. The parameters are placed on the stack in reverse order from how the printf
function retrieves them, so the buffer value is placed first, followed by the output string value. After
that, the print£ function is called using the CALL instruction:

pushl sSbuffer
pushl Soutput
call printf

addl $8, %esp

The ADDL instruction is used to clear the parameters placed on the stack for the printf function. The
same technique is used to place a zero return value on the stack for the C exit function to use.

Linking with C library functions

When you use C library functions in your assembly language program, you must link the C library files
with the program object code. If the C library functions are not available, the linker will fail:

$ as -o cpuid2.o cpuid2.s

$ 1d -o cpuid2 cpuid2.o

cpuid2.0: In function °_start':

cpuid2.o(.text+0x3f): undefined reference to ‘printf'
cpuid2.o(.text+0x46): undefined reference to ‘exit'

$

In order to link the C function libraries, they must be available on your system. On Linux systems, there
are two ways to link C functions to your assembly language program. The first method is called static
linking. Static linking links function object code directly into your application executable program file.
This creates huge executable programs, and wastes memory if multiple instances of the program are run
at the same time (each instance has its own copy of the same functions).

The second method is called dynamic linking. Dynamic linking uses libraries that enable programmers
to reference the functions in their applications, but not link the function codes in the executable program
file. Instead, dynamic libraries are called at the program’s runtime by the operating system, and can be
shared by multiple programs.

On Linux systems, the standard C dynamic library is located in the file 1ibc.so.x, where x is a value

representing the version of the library. On my MEPIS system, this is the file 1ibc . so. 5. This library file
contains the standard C functions, including printf and exit.

88

A Sample Assembly Language Program

This file is automatically linked to C programs when using gcc. You must manually link it to your pro-
gram object code for the C functions to operate. To link the 1ibc. so file, you must use the -1 parameter
of the GNU linker. When using the -1 parameter, you do not need to specify the complete library name.
The linker assumes that the library will be in a file:

/1ib/1libx.so

where the x is the library name specified on the command-line parameter —in this case, the letter c.
Thus, the command to link the program would be as follows:

$ 1d -o cpuid2 -1lc cpuid2.o

S ./cpuid2
bash: ./cpuid2: No such file or directory
$

Well, that’s interesting. The program object code linked with the standard C functions library file just
fine, but when I tried to run the resulting executable file, the preceding error message was generated.

The problem is that the linker was able to resolve the C functions, but the functions themselves were not
included in the final executable program (remember that we used a dynamically linked library). The
linker assumed that the necessary library files would be found at runtime. Obviously, that was not the
case in this instance.

To solve this problem, you must also specify the program that will load the dynamic library at runtime.
For Linux systems, this program is 1d-1inux. so.2, normally found in the /1ib directory. To specify

this program, you must use the -dynamic-1linker parameter of the GNU linker:

$ 1d -dynamic-linker /lib/ld-linux.so.2 -o cpuid2 -1lc cpuid2.o

S ./cpuid2
The processor Vendor ID is 'GenuineIntel'
$

There, that’s much better. Now when the executable program is run, it uses the 1d-1inux. so.2 dynamic
loader program to find the 1ibc. so library, and the program runs just fine.

It is also possible to use the gcc compiler to assemble and link the assembly language program and C
library functions. In fact, in this case it’s a lot easier. The gcc compiler automatically links in the neces-

sary C libraries without you having to do anything special.

First, remember that to compile assembly language programs with gcc, you must change the _start
label to main. After that, all you need to do is compile the source code with a single command:

$ gcc -o cpuid2 cpuid2.s

S ./cpuid2
The processor Vendor ID is 'GenuineIntel'
$

The GNU compiler automatically linked the proper C library functions for you.

89

Chapter 4

Summary

20

When creating your assembly language programes, it is a good idea to have a common program template
for the assembler you are using. The template can be used as a starting point for all programs that are
created with the assembler.

The template used with the GNU assembler requires specific sections to be defined. The GNU assembler
uses sections to divide the different data areas within the program. The data section contains data that is
placed in specific memory locations, referenced by labels. The program can refer to the data memory
area by the label, and modify the memory locations as necessary. The bss section is used to contain
uninitialized data elements, such as working buffers. This is ideal for creating large buffer areas. The text
section is used to hold the actual instruction codes for the program. Once this area is created, it cannot be
changed by the program.

The final piece of the template should define the starting point in your programs. The GNU assembler
uses the _start label to declare the location of the first instruction to process. You can use a different
label, but the label must then be specified with the —e parameter in the linker command. To make the
_start label accessible to run, you must also define it as a global label. This is done using the .globl
directive in the source code.

With a template ready, you can start creating programs. This chapter created a simple test program
using the CPUID instruction to extract the Vendor ID string from the processor. The program was assem-
bled using the GNU assembler, and linked using the GNU linker.

After the program was tested, the GNU debugger was used to show how to debug assembly language
programs. The programs must be assembled using the -gstabs parameter, so the debugger can match
instruction codes with source code lines. Also remember to include a NOP instruction immediately after
the _start label if you need to stop the program execution before the first instruction code.

The GNU debugger enables you to walk through the program code line by line, watching the values of
registers and memory locations along the way. This is an invaluable tool when trying to hunt down logic
problems in algorithms, or even typos where the wrong register is used in an instruction.

Finally, the sample program was modified to show how to utilize C functions within assembly language
programs. The printf and exit functions were used to display data and cleanly exit the program. To
use C functions, the assembly language program must be linked with the C libraries on the host system.
The best way to do that is to use the C dynamic libraries. Linking using dynamic libraries requires
another command-line parameter for the linker, the -dynamic-1inker parameter. This specifies the
program used by the operating system to dynamically find and load the library files.

This ends the introduction to the assembly language section. It is hoped that you now have a good idea
of what assembly language is, and how it will be beneficial to your high-level language applications.
The next section of the book shows the basics of assembly language programming. The next chapter
tackles the sometimes difficult task of manipulating data within assembly language programs.

™

Moving Data

One of the biggest jobs of an assembly language program is handling data objects. In every assem-
bly language program, you will have to manage some type of data elements. This chapter discusses
how assembly language programs handle data and the optimal ways to do that.

The first section shows how to define data elements for use in the assembly language program.
The next section shows how to move data between registers and memory. Next, conditional move
instructions are discussed, showing how to move data dependent on specific actions. After that,
data exchange instructions are described, showing how to swap data between registers, and
between registers and memory. Finally, the stack is discussed, including the instructions used for

manipulating data on the stack.

Defining Data Elements

The GNU assembler provides many different ways to define and handle data elements in your
assembly language program. It’s up to you to choose the best way to deal with the data your
application requires. The data and bss sections both provide methods for defining data elements.
The following sections describe the methods available to define data in assembly language

applications

The data section

The data section of the program is the most common place to define data elements. The data sec-
tion defines specific memory locations where items are stored. These items can be referenced from
the instruction codes in the program, and read and modified at will.

The data section is declared using the .data directive. Any data elements declared in this section
are reserved in memory and can be read or written to by instructions in the assembly language

program.

Chapter 5

There is another type of data section called .rodata. Any data elements defined in this section can
only be accessed in read-only mode (thus the ro prefix).

Two statements are required to define a data element in the data section: a label and a directive.

The label is used as a tag to reference the data element, much like a variable name in a C program. The
label has no meaning to the processor; it is just a place for the assembler to use as a reference point when
trying to access the memory location.

Besides the label, you must define how many bytes will be reserved for the data element. This is done
using an assembler directive. The directive instructs the assembler to reserve a specified amount of
memory for the data element to be referenced by the label.

The amount of memory reserved depends on the type of data that is defined, and the number of items
of that type that will be declared. The following table shows the different directives that can be used to
reserve memory for specific types of data elements.

Directive Data Type

.ascii Text string

.asciz Null-terminated text string

byte Byte value

.double Double-precision floating-point number
float Single-precision floating-point number
Jint 32-bit integer number

Jong 32-bit integer number (same as .int)
.octa 16-byte integer number

.quad 8-byte integer number

.short 16-bit integer number

single Single-precision floating-point number (same as .float)

After the directive is declared, a default value (or values) must be defined. This sets the data in the
reserved memory location to the specific values.

An example of declaring a data element in the data section is as follows:

output:
.ascii "The processor Vendor ID is 'XXXXXXXXXXxXX'\n"

92

Moving Data

This code snippet sets aside 42 bytes of memory, places the defined string sequentially in the memory
bytes, and assigns the label output to the first byte. When the memory location output is referenced
later in the program, the assembler knows to go to the memory location at the start of the text string.

The same applies to numbers. The code

pi:
.float 3.14159

assigns the floating-point representation of 3.14159 to the memory locations referenced by the pi label.

Chapter 7, “Using Numbers,” describes in greater detail how floating-point numbers are stored in
memory.

You are not limited to defining just one value on the directive statement line. You can define multiple
values on the line, with each value being placed in memory in the order it appears in the directive. For
example, the code

sizes:
.long 100,150,200,250,300

places the long integer (4 bytes) value of 100 in the memory location starting at reference sizes, then
places the 4 bytes for the value 150 after that in memory, and so on. This acts as an array of values. Each
individual value can be referenced by its relative location in the list. Knowing that each long integer
value is 4 bytes, you can reference the 200 value by accessing the memory location sizes+8 (and read-
ing 4 bytes).

You can define as many data elements as you need in the data section. Just remember that the label must
precede the directive defining the data:

.section .data
msg:

.ascii "This is a test message"
factors:

.double 37.45, 45.33, 12.30
height:

.int 54
length:

.int 62, 35, 47

Each data element is placed in memory in the order it is defined in the data section. Elements with mul-
tiple values are placed in the order listed in the directive. Figure 5-1 demonstrates how this looks.

93

Chapter 5

00
00
00
2F 1
00
00
00
23

47

35

memory
00 addresses

00
00

62

3E <«——length
00
00
00
36 <«—height

54

Figure 5-1

The lowest memory value contains the first data element. The bytes are placed sequentially in memory.
The next data element immediately follows the previous element.

Be careful when defining data elements and then using them in the program. The program will not
know if you are handling the data properly. For example, if you define two 16-bit integer data values,
but then reference one as a 32-bit integer value, the assembler will still read the 4 bytes of memory
required, even though it will be the wrong value.

Defining static symbols

Although the data section is intended primarily for defining variable data, you can also declare static
data symbols here as well. The . equ directive is used to set a constant value to a symbol that can be used
in the text section, as shown in the following examples:

.equ factor, 3
.equ LINUX_SYS_CALL, 0x80

Once set, the data symbol value cannot be changed within the program. The . equ directive can appear

anywhere in the data section, although to make life easier for anyone else who may need to read your
program, it’s best to define them all at once either before or after the other data that is defined.

94

Moving Data

To reference the static data element, you must use a dollar sign before the label name. For example, the
instruction

movl SLINUX_ SYS_CALL, %eax

moves the value assigned to the LINUX_SYS_CALL symbol to the EAX register.

The bss section

Defining data elements in the bss section is somewhat different from defining them in the data section.
Instead of declaring specific data types, you just declare raw segments of memory that are reserved for
whatever purpose you need them for.

The GNU assembler uses two directives to declare buffers, as shown in the following table.

Directive Description
.comm Declares a common memory area for data that is not initialized
Jcomm Declares a local common memory area for data that is not initialized

While the two sections work similarly, the local common memory area is reserved for data that will not
be accessed outside of the local assembly code. The format for both of these directives is

.comm symbol, length

where symbol is a label assigned to the memory area, and length is the number of bytes contained in
the memory area, as shown in the following example:

.section .bss
.lcomm buffer, 10000

These statements assign a 10,000-byte memory area to the buffer label. Local common memory areas
cannot be accessed by functions outside of where they were declared (they can’t be used in . globl
directives).

One benefit to declaring data in the bss section is that the data is not included in the executable program.
When data is defined in the data section, it must be included in the executable program, since it must be
initialized with a specific value. Because the data areas declared in the bss section are not initialized with
program data, the memory areas are reserved at runtime, and do not have to be included in the final
program.

You can see this by creating a test assembly language program and watching the size of the executable
program as data elements are declared. First, let’s look at a sample program with no data elements:

sizetestl.s - A sample program to view the executable size
.section .text

.globl _start

_start:

95

Chapter 5

movl $1, %eax
movl $0, %ebx
int $0x80

Now, assemble and link the program, and then view the size of it:

$ as -0 sizetestl.o sizetestl.s

$ 1d -o sizetestl sizetestl.o

$ 1ls -al sizetestl

—XWXY-Xr-X 1 rich rich 724 Jul 16 13:54 sizetestl*

$

The total size of the executable program file is 724 bytes. Now, let’s create another test program, this time
adding a 10,000-byte buffer declared in the bss section:

sizetest2.s - A sample program to view the executable size
.section .bss
.lcomm buffer, 10000
.section .text
.globl _start
_start:
movl $1, %eax
movl $0, %ebx
int $0x80

Again, assemble and link the program, and then view the size of it:

$ as -0 sizetest2.0 sizetest2.s

$ 1d -o sizetest2 sizetest2.o

$ 1ls -al sizetest2

—YWXr-Xr-X 1 rich rich 747 Jul 16 13:57 sizetest2*

$

Not bad. We added a 10,000-byte buffer, but the size of the executable program file only increased by 23
bytes. Now, let’s create a third test program, this time using the . £i11 directive to create a 10,000-byte
buffer in the data section:

sizetest3.s - A sample program to view the executable size
.section .data
buffer:
.fi11 10000
.section .text
.globl _start
_start:
movl $1, %eax
movl $0, %ebx
int $0x80

The . £111 directive enables the assembler to automatically create the 10,000 data elements for you. The
default is to create one byte per field, and fill it with zeros. You could have declared a . byte data value,

and listed 10,000 bytes yourself. After assembling and linking the application, you can see the total size
of the executable program:

96

Moving Data

$ as -o sizetest3.o sizetest3.s

$ 1d -o sizetest3 sizetest3.o

S 1ls -al sizetest3

—TWXY-XT-X 1 rich rich 10747 Jul 16 14:00 sizetest3
s

Wow, look at the size of the executable program. The 10,000 bytes of buffer space is added to the exe-
cutable program, making it considerably larger than necessary.

Moving Data Elements

After data elements have been defined, you must know how to handle them. Because the data elements
are located in memory, and many of the processor instructions utilize registers, the first step to handling
data elements is to be able to move them around between memory and registers.

The MOV instruction is used as a general-purpose data mover. It is one of the most often used instructions

in assembly language programs. The following sections describe the different ways you can use the MOV
instruction to move data around in your program.

The MOV instruction formats

The basic format of the MOV instruction is as follows:
movx source, destination

The source and destination values can be memory addresses, data values stored in memory, data
values defined in the instruction statement, or registers.

Remember that the GNU assembler uses AT&T style syntax, so the source and destination operands are
in the opposite order from what is shown in the Intel documentation.

The GNU assembler adds another dimension to the MOV instruction, in that the size of the data element
moved must be declared. The size is declared by adding an additional character to the MOV mnemonic.
Thus, the instruction becomes

movx

where x can be the following:

Q 1 for a 32-bit long word value
Q wfor a 16-bit word value

Q b for an 8-bit byte value
Thus, to move the 32-bit EAX register to the 32-bit EBX register, you would use the instruction

movl %eax, %ebx

97

Chapter 5

M

98

whereas for the 16-bit registers, the instruction would be
movw %ax, %bx
and for the 8-bit registers:

movb %al, %bl

There are very specific rules for using the MOV instruction. Only certain things can be moved to other
things, as shown in the following combinations for a MOV instruction:

(]

An immediate data element to a general-purpose register
An immediate data element to a memory location

A general-purpose register to another general-purpose register
A general-purpose register to a segment register

A segment register to a general-purpose register

A general-purpose register to a control register

A control register to a general-purpose register

A general-purpose register to a debug register

A debug register to a general-purpose register

A memory location to a general-purpose register

A memory location to a segment register

A general-purpose register to a memory location

O 00U 000 0D0DUO0O0DOC

A segment register to a memory location
The following sections describe these scenarios in more detail, and show examples for each one.

Note a caveat to these rules. As you will see in Chapter 10, “Working with Strings,” the MOVS instruc-
tions are special-use instructions for moving string values from one memory location to another mem-
ory location. These instructions are not covered in this chapter.

oving immediate data to registers and memory

The easiest task of moving data into registers and memory locations is moving immediate data.
Immediate data is directly specified in the instruction code statement, and cannot be changed during
runtime.

Following are some examples of moving immediate data:

movl $0, %eax # moves the value 0 to the EAX register
movl $0x80, %ebx # moves the hexadecimal value 80 to the EBX register
movl $100, height # moves the value 100 to the height memory location

Moving Data

Each of these instructions specifies the value of the data element within the instruction code. Note that
each value must be preceded by a dollar sign to indicate that it is an immediate value. The values can
also be expressed in several different formats, decimal (such as 10, 100, or 230) or hexadecimal (such as
0x40, 0x3f, or 0xff). These values cannot be changed after the program is assembled and linked into the
executable program file.

Moving data between registers

The next basic task of the MOV instruction is moving data from one processor register to another. This is
the quickest way to move data with the processor. It is often advisable to keep data in processor registers
as much as possible to decrease the amount of time spent trying to access memory locations.

The eight general-purpose registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP) are the most common
registers used for holding data. These registers can be moved to any other type of register available.
Unlike the general-purpose registers, the special-purpose registers (the control, debug, and segment reg-
isters) can only be moved to or from a general-purpose register.

Some examples of moving data between registers are as follows:

movl %eax, %ecx # move 32-bits of data from the EAX register to the ECX register
movw %ax, %CX # move 16-bits of data from the AX register to the CX register

Moving data between similarly sized registers is easy. What gets tricky is moving data between dissimi-
larly sized registers. You must be careful when specifying larger-sized registers to receive smaller-sized
data. The instruction

movb %al, %bx

will produce an error by the assembler. This instruction attempts to move the 8 bits in the AL register to
the lower 8 bits in the BX register. Instead, you should move the entire $ax register to the $bx register
using the MOVW instruction.

Moving data between memory and registers

Moving data between registers is a simple task; unfortunately, moving data between registers and mem-
ory is not so easy. You must consider several things when moving data to and from memory locations.
This section shows the different scenarios you will encounter when dealing with moving things between
memory and registers.

Moving data values from memory to a register

The first thing you must decide is how the memory address will be represented in the instruction code.
The simplest case is to use the label used to define the memory location:

movl value, %eax
This instruction moves the data value located at the memory location specified by the value label to the

EAX register. This is actually a little trickier than it sounds. Remember that the MOVL instruction moves
32 bits of information; thus, it is moving 4 bytes of data starting at the memory location referenced by

99

Chapter 5

the value label. If you have less than 4 bytes of data, you must use one of the other MOV instructions,
such as MOVB for 1 byte, or MOVW for 2 bytes.

Here’s an example to show what happens:

movtestl.s - An example of moving data from memory to a register
.section .data
value:
.int 1
.section .text
.globl _start
_start:
nop
movl value, %ecx
movl S$1, %eax
movl $0, %ebx
int $0x80

Now, assemble the movtestl.s program with the -gstabs parameter, link it, and run the program in
the debugger:

$ as -gstabs -o movtestl.o movtestl.s

$ 1d -o movtestl movtestl.o

$ gdb -g movtestl

(gdb) break *_start+1l

Breakpoint 1 at 0x8048075: file movtestl.s, line 10.
(gdb) run

Starting program: /home/rich/palp/chap05/movtestl

Breakpoint 1, _start () at movtestl.s:10
10 movl (value), %ecx

Current language: auto; currently asm
(gdb) print/x $Secx

$1 = 0x0

(gdb) next

11 movl $1, %eax
(gdb) print/x S$Secx

$2 = 0x1

(gdb)

As expected, the value stored in the memory location was moved to the ECX register.

Moving data values from a register to memory

Placing the data back in a memory location uses a similar approach:
movl %ecx, value
This instruction moves the 4 bytes of data stored in the ECX register to the memory location specified by

the value label. As before, this instruction moves 4 bytes of data, so it will use four memory locations to
store the data. Here’s a code example of this instruction in action:

100

Moving Data

movtest2.s - An example of moving register data to memory
.section .data
value:
.int 1
.section .text
.globl _start
_start:
nop
movl $100, %eax
movl %eax, value
movl $1, %eax
movl $0, %ebx
int $0x80

Again, assemble the movtest2.s program with the -gstabs parameter, link it, and then run it in the
debugger:

$ as -o movtest2.o -gstabs movtest2.s

$ 1d -o movtest2 movtest2.o

S gdb -g movtest2

(gdb) break *_start+1l

Breakpoint 1 at 0x8048075: file movtest2.s, line 11.
(gdb) run

Starting program: /home/rich/palp/chap05/movtest2

Breakpoint 1, _start () at movtest2.s:11
11 movl $100, %eax

Current language: auto; currently asm
(gdb) x/d &value

0x804908c <value>: 1
(gdb) s

12 movl %eax, value
(gdb) s

13 movl $1, %eax
(gdb) x/d &value

0x804908c <value>: 100
(gdb)

By examining the memory location referenced by the value label (using the x gdb command), you can
see the initial value of 1 is stored. After stepping through the program until the value of the EAX register
is moved to the memory location, you can check it again. This time the value is 100, so the register value
was indeed stored in the memory location.

This technique works fine when accessing a single data element referenced by a label, but becomes com-
plicated if you need to reference multiple values, such as in a data array. The next section describes how
to handle these situations.

Using indexed memory locations

As shown previously in the “Defining Data Elements” section, you can specify more than one value on
a directive to place in memory:

101

Chapter 5

values:
.int 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60

This creates a sequential series of data values placed in memory. Each data value occupies one unit of
memory (which in this case is a long integer, or 4 bytes). When referencing data in the array, you must
use an index system to determine which value you are accessing.

The way this is done is called indexed memory mode. The memory location is determined by the
following;:

O Abase address

Q An offset address to add to the base address
Q The size of the data element
a

An index to determine which data element to select
The format of the expression is
base_address (offset_address, index, size)
The data value retrieved is located at
base_address + offset_address + index * size

If any of the values are zero, they can be omitted (but the commas are still required as placeholders).
The offset_address and index value must be registers, but the size value can be a numerical value.
For example, to reference the value 20 from the values array shown, you would use the following
instructions:

movl $2, %edi
movl values(, %edi, 4), %eax

This instruction loads the third index value of 4 bytes from the values label to the EAX register (remem-
ber, the array starts with index 0). Most often, you will use a register counter as the index value, and
change that value to match the array element you need to work with. This is shown in the movtest3.s
sample program:

movtest3.s - Another example of using indexed memory locations
.section .data
output:
.asciz "The value is %d\n"
values:
.int 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60
.section .text
.globl _start
_start:
nop
movl $0, %edi
loop:

102

Moving Data

movl values(, %edi, 4), %eax
pushl %eax
pushl Soutput
call printf
addl $8, %esp
inc %edi

cmpl $11, %edi
jne loop

movl $0, %ebx
movl $1, %eax
int $0x80

Because this example uses the C printf function, remember to link it with the C library dynamic linker
on your system:

$ as -o movtest3.o movtest3.s
$ 1d -dynamic-linker /lib/ld-linux.so.2 -1lc -o movtest3 movtest3.o
S ./movtest3

The value is 10

The value is 15

The value is 20

The value is 25

The value is 30

The value is 35

The value is 40

The value is 45

The value is 50

The value is 55

The value is 60

$

The movtest3.s program walks through the data array specified by the values label, displaying each
value on the console. It uses the EDI register as an index to walk through the array:

movl values(, %edi, 4), %eax

After each value is displayed, the EDI register value is incremented (using the INC instruction, which
adds one to the register). The program checks the value of the EDI register, and loops back to retrieve the
next array value if the maximum value has not been met. Don’t worry too much about the auxiliary code
used in this example. All of these instructions are covered in later chapters. Concentrate on how the pro-
gram manipulates the data array defined.

Because this is just an example and not a real application, a hard-coded value is used to check when the
EDT register has reached the end of the array. In a real-life situation, you would want to dynamically
determine the number of items in the array, and loop until they have all been read.

Using indirect addressing with registers

Besides holding data, registers can also be used to hold memory addresses. When a register holds a
memory address, it is referred to as a pointer. Accessing the data stored in the memory location using
the pointer is called indirect addressing.

103

Chapter 5

This technique can be the most confusing part of accessing data. If you are already accustomed to using
pointers in C or C++, you should have no problem with indirect addressing. If not, this might take a
while to sink in.
While using a label references the data value contained in the memory location, you can get the memory
location address of the data value by placing a dollar sign ($) in front of the label in the instruction. Thus
the instruction

movl S$values, %edi
is used to move the memory address the values label references to the EDI register.

Remember that in a flat memory model, all memory addresses are represented by 32-bit numbers.

If you have read Chapter 4, “A Sample Assembly Language Program,” you already saw indirect
addressing in action. The cpuid. s program used the following instruction:

movl Soutput, %edi
This instruction moves the memory address of the output label to the EDI register. The dollar sign ($)
before the label name instructs the assembler to use the memory address, and not the data value located
at the address.
The next instruction in the cpuid. s program:

movl %ebx, (%edi)
is the other half of the indirect addressing mode. Without the parentheses around the EDI register, the
instruction would just load the value in the EBX register to the EDI register. With the parentheses around
the EDI register, the instruction instead moves the value in the EBX register to the memory location con-
tained in the EDI register.
This is a very powerful tool. Similar to pointers in C and C++, it enables you to control memory address
locations with a register. The real power is realized by incrementing the indirect addressing value con-

tained in the register. Unfortunately, the GNU assembler has a somewhat odd way of doing that.

Instead of just allowing you to add a value to the register, you must place the value outside of the paren-
theses, like so:

movl %edx, 4 (%edi)

This instruction places the value contained in the EDX register in the memory location 4 bytes after the
location pointed to by the EDI register. You can also go in the opposite direction:

movl %edx, -4(&edi)

This instruction places the value in the memory location 4 bytes before the location pointed to by the
EDI register.

104

Moving Data

Here’s an example program, movtest4. s, that demonstrates indirect addressing mode:

movtestd.s - An example of indirect addressing
.section .data
values:

.int 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60
.section .text
.globl _start
_start:

nop

movl values, %eax

movl S$values, %edi

movl $100, 4 (%edi)

movl $1, %edi

movl values(, %edi, 4), %ebx

movl S$1, %eax

int $0x80

To get the full benefit from this example, assemble it with the -gstabs parameter and watch it run in

the debugger:

S gdb -g movtest4

(gdb) break *_start+l

Breakpoint 1 at 0x8048075: file movtest4d.s, line 10.
(gdb) run

Starting program: /home/rich/palp/chap05/movtestd

Breakpoint 1, _start () at movtestd.s:10
10 movl values, %eax

Current language: auto; currently asm
(gdb)

First, look at the values stored in the memory locations referenced by the value label:

(gdb) x/4d &values
0x804909¢c <values>: 10 15 20 25

It was loaded with the data specified in the . int directive (the 4a parameter of the x command displays
the first four elements, and in decimal mode). Next, step through the program to load the first data ele-

ment from the values array to the EAX register:

(gdb) s

11 movl S$values, %edi
(gdb) print Seax

$1 = 10

(gdb)

As expected, the EAX register now contains the value 10, the first element in the array. Continue to step

through the program and watch the values memory address get loaded into the EDI register:

105

Chapter 5

(gdb) s

12 movl $100, 4 (%edi)
(gdb) print/x S$edi

$2 = 0x804909c

(gdb)

The EDI register now holds the hexadecimal value of 0x804909c. This is the memory address the value
label references. The next instruction moves the immediate data value of 100 to the memory address 4
bytes after the address to which the EDI register points. This should be the second data element in the
values array. You can see that from displaying the values array using the x command:

(gdb) s

13 movl $1, %edi

(gdb) x/4d &values

0x804909c <values>: 10 100 20 25
(gdb)

Sure enough, the 100 value has replaced the 15 value as the second data element in the values array.
The next instructions load the second data element of the array into the EBX register:

movl $1, %edi
movl values(, %edi, 4), %ebx

The remainder of the program uses the exit Linux system call to terminate the program. The exit code
from the program should be the newly created second data array element (100) that was placed in the
EBX register. This value can be checked by examining the exit code in the shell. This is done using the
special environment variable $?:

$./movtest4d
$ echo $?
100

S

Conditional Move Instructions

The MOV instruction is a very powerful instruction to have at your disposal. It is the backbone of most
assembly language programs. However, there are ways it can be improved. Over the years, Intel has
tweaked the IA-32 platform to provide additional functionality, making assembly language program-
mers’ jobs easier. The conditional move instructions are one of those tweaks, available starting in the P6
family of Pentium processors (the Pentium Pro, Pentium II, and newer).

A conditional move instruction is just what its name implies, a MOV instruction that takes place under spe-
cific conditions. In older assembly language programs, you will see code that looks like the following:

dec %ecx

jz continue

movl $0, %ecx
continue:

106

Moving Data

This code snippet first increments the value in the ECX register by one. If the ECX register does not over-
flow (the Carry flag is not set), the INC instruction jumps to the continue label. If the register overflows,
it is caught by the JNC instruction, and the ECX register is set back to zero (this concept is covered in
Chapter 6, “Controlling Execution Flow”).

The value of the ECX register depends on its condition, which must be checked with a jump instruction.
Instead of having to utilize a jump instruction to check the Carry flag, you can use a conditional move
instruction, which will do that for you.

While this is a trivial example, in more complicated production applications the conditional move
instruction can prevent the processor from implementing JMP instructions, which helps out the prefetch
cache condition of the processor, usually speeding up the application.

The following sections describe the conditional move instructions, and demonstrate how to use them in
your assembly language programs.

The CMOV instructions

A whole host of instructions are included in the conditional move instruction set. All of the instructions
have the format

cmovx source, destination

where x is a one- or two-letter code denoting the condition that will trigger the move action. The condi-
tions are based on the current values in the EFLAGS register. The specific bits that are used by the condi-
tional move instructions are shown in the following table.

EFLAGS Bit Name Description

CF Carry flag A mathematical expression has created a
carry or borrow

OF Overflow flag An integer value is either too large or too
small

PF Parity flag The register contains corrupt data from a
mathematical operation

SF Sign flag Indicates whether the result is negative or
positive

ZF Zero flag The result of the mathematical operation
is zero

The conditional move instructions are grouped together in pairs, with two instructions having the same
meaning. For example, a value can be above another value, but it can also be not below or equal to the
value. Both conditions are equivalent, but both have separate conditional move instructions.

107

Chapter 5

The conditional move instructions are divided into instructions used for signed operations and for
unsigned operations. The signed operations involve comparisons that utilize the Sign flag, while the
unsigned operations involve comparisons that disregard the Sign flag (for a complete description of
signed an unsigned operations, see Chapter 7, “Using Numbers”).

The following table shows the unsigned conditional move instructions.

Instruction Pair Description EFLAGS Condition
CMOVA/CMOVNBE Above/not below or equal (CForZF)=0
CMOVAE/CMOVNB Above or equal/not below CF=0
CMOVNC Not carry CF=0
CMOVB/CMOVNAE Below /not above or equal CF=1
CMOVC Carry CF=1
CMOVBE/CMOVNA Below or equal/not above (CForZF) =1
CMOVE/CMOVZ Equal/zero ZF=1
CMOVNE/CMOVNZ Not equal/not zero ZF=0
CMOVP/CMOVPE Parity / parity even PF=1
CMOVNP/CMOVPO Not parity/parity odd PF=0

As you can see from the table, the unsigned conditional move instructions rely on the Carry, Zero, and
Parity flags to determine the difference between two operands. If the operands are signed values, a dif-
ferent set of conditional move instructions must be used, as shown in the following table.

Instruction Pair

Description

EFLAGS Condition

CMOVGE/CMOVNL
CMOVL/CMOVNGE
CMOVLE/CMOVNG
CMOVO

CMOVNO

CMOVS

CMOVNS

Greater or equal/not less
Less/not greater or equal
Less or equal/not greater
Overflow

Not overflow

Sign (negative)

Not sign (non-negative)

(SF xor OF)=0

(SF xor OF)=1

((SF xor OF) or ZF)=1
OF=1

OF=0

SF=1

SF=0

The difference between signed and unsigned numbers is discussed in more detail in Chapter 7.

The signed conditional move instructions utilize the Sign and Overflow flags to indicate the condition of
the comparison between the operands.

108

Moving Data

The conditional move instructions need some type of mathematical instruction that sets the EFLAGS reg-
ister to operate. Here’s an example of the CMOV instruction in action:

movl value, %ecx
cmp %$ebx, %ecx
cmova %ecx, %ebx

This code snippet loads the ECX register with a data value referenced by the value label, and then uses
the cMP instruction to compare that value with the value held in the EBX register. The cMP instruction
subtracts the first operand from the second and sets the EFLAGS registers appropriately. The cMOvA
instruction is then used to replace the value in EBX with the value in ECX if the value is larger than what
was originally in the EBX register.

Remember that in AT&T syntax, the order of the operands in the cMP and CMOVA instructions are
reversed from the Intel documentation. This can be confusing.

The conditional move instruction saves the assembly language programmer from having to code jump
statements after the compare statement. This concept is expanded in the example program shown in the
next section.

Using CMOV instructions

The cmovtest. s program demonstrates using the conditional move instructions. Here’s what the pro-
gram looks like:

cmovtest.s - An example of the CMOV instructions
.section .data
output:

.asciz "The largest value is %d\n"
values:

.int 105, 235, 61, 315, 134, 221, 53, 145, 117, 5
.section .text
.globl _start
_start:

nop

movl values, %ebx

movl $1, %edi
loop:

movl values(, %edi, 4), %eax

cmp %$ebx, %eax

cmova %$eax, %ebx

inc %edi

cmp $10, %edi

jne loop

pushl %ebx

pushl $output

call printf

addl $8, %esp

pushl $0

call exit

109

Chapter 5

The cmovtest . s program finds the largest integer in a series defined in the values array. It uses some
instructions that are covered in later chapters, but for now, just watch how the conditional move state-

ments work.

The EBX register is used to hold the current largest integer found. To start off, the first value in the array
is loaded into the EBX register.

The array elements are then loaded one by one into the EAX register, and compared with the value in
the EBX register. If the value in the EAX register is larger, it is moved to the EBX register, and becomes
the new largest value. By stepping through the program section in the debugger, you can see the
process in action:

(gdb) s

14 movl values(, %edi, 4), %eax
(gdb) s

15 cmp %$ebx, %eax

(gdb) print S$Seax

$1 = 235

(gdb) print Sebx

$2 = 105

(gdb)

At this point, the first value in the array (105) is loaded in the EBX register, and the second value (235)
is loaded in the EAX register. Next, the cMP and CMOVA instructions are run, and the EBX register is
checked again:

(gdb) s

16 cmova %eax, %$ebx
(gdb) s

17 inc %edi

(gdb) print S$ebx

$3 = 235

(gdb)

As expected, the larger value (235) was moved into the EBX register. This process continues until all
of the values in the array have been tested. At the end, the value remaining in the EBX register is the
largest value in the array. The output of the program should come up with the largest value in the
array:

$./cmovtest
The largest value is 315

$

Exchanging Data

Sometimes in programs it becomes necessary to switch the location of data elements. One drawback to
the MOV instructions is that it is difficult to switch the values of two registers without using a temporary
intermediate register. For example, to exchange the values in the EAX and EBX register, you would have
to do something like what is demonstrated in Figure 5-2.

110

Moving Data

EAX TEMP EBX
1. 10 10 20
EAX TEMP EBX
2. 20 10 20
EAX TEMP EBX
3. 20 10 10

\/

Figure 5-2

Figure 5-2 illustrates the use of an intermediate register to exchange the data in two registers. The
instruction codes would look like this:

movl %eax, %ecx
movl %ebx, %eax
movl %ecx, %ebx

Three instructions are required, as well as a spare register to hold the intermediate value. The data
exchange instructions solve this problem. Data can be exchanged between registers with no intermediate
registers required. This section describes the data exchange instructions, and demonstrates how they are
used in a program.

The data exchange instructions

Several instructions are included in the data exchange instruction set. Each one has a specific purpose, and
can come in handy when handling data in programs. The instructions are described in the following table.

Instruction Description

XCHG Exchanges the values of two registers, or a register and a memory location
BSWAP Reverses the byte order in a 32-bit register

XADD Exchanges two values and stores the sum in the destination operand
CMPXCHG Compares a value with an external value and exchanges it with another
CMPXCHGSB Compares two 64-bit values and exchanges it with another

The following sections describe each of these instructions in more detail.

111

Chapter 5

XCHG

The XCHG instruction is the simplest in the group. It can exchange data values between two general-
purpose registers, or between a register and a memory location.

The format of the instruction is as follows:
xchg operandl, operand2

Either operandl or operand2 can be a general-purpose register or a memory location (but both cannot
be a memory location). The command can be used with any general-purpose 8-, 16-, or 32-bit register,
although the two operands must be the same size.

When one of the operands is a memory location, the processor’s LOCK signal is automatically asserted,
preventing any other processor from accessing the memory location during the exchange.

Be careful when using the XCHG instruction with memory locations. The LOCK process is very time-
consuming, and can be detrimental to your program’s performance.

BSWAP

The BSWAP instruction is a powerful tool to have handy when working with systems that have different
byte orientations. The BSWAP instruction reverses the order of the bytes in a register. Bits 0 through 7 are
swapped with bits 24 through 31, while bits 8 through 15 are swapped with bits 16 through 23. This is
demonstrated in Figure 5-3.

7N

31 23 15 7 0

D

Figure 5-3

It is important to remember that the bits are not reversed; but rather, the individual bytes contained
within the register are reversed. This produces a big-endian value from a little-endian value, and
visa versa.

112

Moving Data

Here’s a quick test of the BSWAP instruction, the swaptest. s program:

swaptest.s - An example of using the BSWAP instruction
.section .text
.globl _start
_start:
nop
movl $0x12345678, %ebx
bswap %ebx
movl S$1, %eax
int $0x80

This program simply loads the hexadecimal value 12345678 into the EBX register and then swaps the
bytes using the BSWAP instruction. You can see what happens in the debugger:

S gdb -g swaptest

(gdb) break *_start+l

Breakpoint 1 at 0x8048075: file swaptest.s, line 5.
(gdb) run

Starting program: /home/rich/palp/chap05/swaptest

Breakpoint 1, _start () at swaptest.s:5
5 movl $0x12345678, %ebx
Current language: auto; currently asm
(gdb) step
start () at swaptest.s:6
bswap %ebx
gdb) print/x $ebx
1 = 0x12345678
gdb) step
_start () at swaptest.s:7
7 movl S$1, %eax
(gdb) print/x Sebx
$2 = 0x78563412
(gdb)

6
(
$
(

With the program stopped after the first MOVL instruction, you can check the hexadecimal value of the
EBX register, and sure enough it’s 12345678. Now, after stepping through the BSWAP instruction and dis-
playing the EBX register, it is 78563412, the reverse endian order of the original value.

XADD

The XADD instruction is used to exchange the values between two registers, or a memory location and a
register, add the values, and then store them in the destination location (either a register or a memory
location). The format of the XADD instruction is

xadd source, destination
where source must be a register, and destination can be either a register or a memory location, and

contains the results of the addition. The registers can be 8-, 16-, or 32-bit register values. The XADD
instruction is available starting with the 80486 processors.

113

Chapter 5

CMPXCHG

The CMPXCHG instruction compares the destination operand with the value in the EAX, AX, or AL registers.
If the values are equal, the value of the source operand value is loaded into the destination operand. If
the values are not equal, the destination operand value is loaded into the EAX, AX, or AL registers. The
CMPXCHG instruction is not available on processors earlier than the 80486.

In the GNU assembler, the format of the CMPXCHG instruction is
cmpxchg source, destination

which is the reverse of the Intel documents. The destination operand can be an 8-, 16-, or 32-bit register,
or a memory location. The source operand must be a register whose size matches the destination
operand.

The cmpxchgtest . s program demonstrates the CMPXCHG instruction:

cmpxchgtest.s - An example of the cmpxchg instruction
.section .data
data:
.int 10
.section .text
.globl _start
_start:
nop
movl $10, %eax
movl $5, %ebx
cmpxchg %ebx, data
movl $1, %eax
int $0x80

The memory location referenced by the data label is compared with the value in the EAX register using
the CMPXCHG instruction. Because they are equal, the value in the source operand (EBX) is loaded in the

data memory location, and the value in the EBX register remains the same. You can check this behavior
using the debugger:

(gdb) run
Starting program: /home/rich/palp/chap05/cmpxchgtest

Breakpoint 1, _start () at cmpxchgtest.s:9
9 movl $10, %eax

Current language: auto; currently asm
(gdb) step

10 movl $5, %ebx

(gdb) step

11 cmpxchg %ebx, data

(gdb) x/d &data

0x8049090 <data>: 10

(gdb) s

12 movl $1, %eax

(gdb) print Seax

$3 = 10

114

Moving Data

(gdb) print Sebx

$4 =5

(gdb) x/d &data

0x8049090 <data>: 5
(gdb)

Before the CMPXCHG instruction, the value of the data memory location is 10, which matches the value
set in the EAX register. After the CMPXCHG instruction, the value in EBX (which is 5) is moved to the data
memory location.

You can also test the other option by changing the value assigned to the data label to something other
than 10. Because that value does not match the value in EAX, you will notice that the data value is not
changed, but the EAX value now contains the value you set in the data label.

CMPXCHGSB

As you can tell from the instruction name, the CMPXCHGS8B instruction is similar to the CMPXCHG instruc-
tion, but with a twist—it works with 8-byte values (thus the 8B on the end). This instruction is not sup-
ported on IA_32 processors earlier than the Pentium processor. The format of the CMPXCHG8B instruction
takes only a single operand:

cmpxchg8b destination

The destination operand references a memory location, where 8 bytes will be compared with the 8-
byte value contained in the EDX and EAX registers (with EDX being the high-order register and EAX being
the low-order register). If the destination value matches the value contained in the EDX : EAX pair, the 64-
bit value located in the ECX : EBX register pair is moved to the destination memory location. If not, the
value in the destination memory address is loaded in the EDX : EAX register pair.

To demonstrate this, here’s the cmpxchg8btest . s program:

cmpxchg8btest.s - An example of the cmpxchg8b instruction
.section .data
data:

.byte 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88

.section .text

.globl _start

_start:
nop
movl $0x44332211, %eax
movl $0x88776655, %edx
movl $0x11111111, %ebx
movl $0x22222222, %ecx
cmpxchg8b data
movl $0, %ebx
movl $1, %eax
int $0x80

The data label defines 8 bytes of memory with a specific pattern defined. The EAX and EDX registers
contain the same pattern (with EDX being the high-order bytes and EAX being the low-order bytes).

115

Chapter 5

Notice how the bytes are arranged in the registers as compared to the memory locations. Next, the EBX
and ECX registers are loaded with a completely different data pattern to set them apart. The CMPXCHG8B
instruction is used to compare the data referenced by the data label with the EDX: EAX register pair.

To see the CMPXCHGS8B instruction in action, you need to run this program in the debugger. First, look at
the data values referenced by the data label before the CMPXCHG8B instruction:

$ gdb -g cmpxchg8btest

(gdb) break *_start+1l

Breakpoint 1 at 0x8048075: file cmpxchg8btest.s, line 10.
(gdb) run

Starting program: /home/rich/palp/chap05/cmpxchg8btest

Breakpoint 1, _start () at cmpxchg8btest.s:10

10 movl $0x44332211, %eax

Current language: auto; currently asm

(gdb) x/8b &data

0x804909c <data>: 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

(gdb) s

11 movl $0x88776655, %edx
(gdb) s

12 movl $0x11111111, %ebx
(gdb) s

13 movl $0x22222222, %ecx
(gdb) s

14 cmpxchg8b data

(gdb) s

15 movl $0, %ebx

(gdb) x/8b &data
0x804909c <data>: 0x11 0x11 0x11 0x11 0x22 0x22 0x22 0x22
(gdb)

The 8b option is used with the x command to display all 8 bytes located at the data label. As you
can see from the output, indeed the values in the ECX : EBX registers were placed in the data memory
location.

Using the data exchange instruction

Classic examples of the data exchange instructions in action are sort routines. Many different algorithms
are used to sort an array of data. Some of them are more efficient than others, but almost all of them
search through the data array and swap elements to get them in the proper order.

The bubble. s example uses the classic bubble sort algorithm to sort an array of integers. While not the
most efficient sort method, the bubble sort is the easiest to understand and demonstrate. First, here’s the
source code for the program:

bubble.s - An example of the XCHG instruction
.section .data
values:

.int 105, 235, 61, 315, 134, 221, 53, 145, 117, 5
.section .text
.globl _start

116

Moving Data

_start:
movl S$Svalues, %esi
movl $9, %ecx
movl $9, %ebx

loop:
movl (%esi), %eax
cmp %eax, 4(%esi)
jge skip

xchg %$eax, 4 (%esi)
movl %eax, (%esi)
skip:
add $4, %esi
dec %ebx
jnz loop
dec %ecx
jz end
movl Svalues, %esi
movl %ecx, %ebx
jmp loop
end:
movl S$1, %eax
movl $0, %ebx
int $0x80

This is the longest example program presented so far in the book, but it is the most useful. Again, don’t
worry too much about instructions not covered yet. The program uses a lot of jumps, which are discussed
in greater detail in Chapter 6, “Controlling Execution Flow.”

The basic algorithm for a bubble sort from a high-level language perspective looks like this:

for (out = array_size-1; out>0, out--)
{
for(in = 0; in < out; in++)
{
if (arraylin] > array[in+1])
swap (arrayl[in], arrayl[in+l1l]);

There are two loops. The inner loop runs through the array, checking the adjacent array value to see
which is larger. If a larger value is found in front of a smaller value, the two values are swapped in the
array. This continues through to the end of the array.

When the first pass has completed, the largest value in the array should be at the end of the array, but
the remaining values are not in any particular order. You must take N-1 passes through an array of N ele-
ments before all of the elements are in sorted order. The outer loop controls how many total passes of the
inner loop are performed. For each new pass of the inner loop, there is one less element to check, as the
last element of the previous pass should be in the proper order.

This algorithm is implemented in the assembly language program using a data array and two counters,
EBX and ECX. The EBX counter is used for the inner loop, decreasing each time an array element is tested.
When it reaches zero, the ECX counter is decreased, and the EBX counter is reset. This process continues
until the ECX counter reaches zero. This indicates that all of the required passes have been completed.

117

Chapter 5

The actual comparing and swapping of array values is done using indirect addressing. The EST register
is loaded with the memory address of the start of the data array. The EST register is then used as a
pointer to each array element during the comparison section:

movl (%esi), %eax
cmp %eax, 4(%esi)
jge skip

xchg %eax, 4(%esi)
movl %eax, (%esi)
skip:

First, the value in the first array element is loaded into the EAX register, and compared with the second
array element (located 4 bytes from the first). If the second element is already larger than or equal to the
first element, nothing happens and the program moves on to the next pair.

If the second element is less than the first element, the XCHG instruction is used to swap the first element
(loaded into the EAX register) with the second element in memory. Next, the second element (now loaded
into the EAX register) is then placed in the first element location in memory.

After this, the EST register is incremented by 4 bytes, now pointing to the second element in the array.
The process is then repeated, now using the second and third array elements. This continues until the
end of the array is reached.

This simple sample program does not produce any output. Instead, to see if it really works, you can use
the debugger and view the values array before and after the program is run. Here’s a sample output of
the program in action:

$ as -gstabs -o bubble.o bubble.s

$ 1d -o bubble bubble.o

$ gdb -g bubble

(gdb) break *end

Breakpoint 1 at 0x80480a5: file bubble.s, line 28.
(gdb) x/10d &values

0x80490b4 <values>: 105 235 61 315
0x80490c4 <values+16>: 134 221 53 145
0x80490d4 <values+32>: 117 5

(gdb) run

Starting program: /home/rich/palp/chap05/bubble

Breakpoint 1, end () at bubble.s:28
28 movl $1, %eax

Current language: auto; currently asm
(gdb) x/10d &values

0x80490b4 <values>: 5 53 61 105
0x80490c4 <values+16>: 117 134 145 221
0x80490d4 <values+32>: 235 315

(gdb)

To capture the data array values at the end of the program, a breakpoint is created at the end label. The
values at the start of the program reflect the order the values were placed in the . int directive defini-
tion. After the program runs, the values are checked. Sure enough, they have been reordered in the
proper order.

118

Moving Data

The Stack

As described in Chapter 1, “What Is Assembly Language Programming?,” the stack is another memory
element used by the program. The stack is one of the most misunderstood items in assembly language

programs, and causes considerable grief for some rookie programmers.

This section explains the stack and the instructions used to access it.

How the stack works

The stack is a special reserved area in memory for placing data. What makes it special is the way in
which data is inserted and removed from the stack area. As demonstrated earlier in Figure 5-1, data ele-
ments are placed in the data section in a sequential manner, starting at the lowest memory location in
the data section, and working toward higher memory locations.

The stack behaves just the opposite. The stack is reserved at the end of the memory area, and as data is

placed on the stack, it grows downward. This is demonstrated in Figure 5-4.

existing
stack
data

ECX

00
00

00

00

00

2F

00

00

00

23

00

00

00

45

00

00

00

00
12

pushl % ecx

Figure 5-4

12

memory
addresses

<«—— current ESP

<«—— new ESP

119

Chapter 5

The bottom of the stack (or top of memory) contains data elements placed there by the operating system
when the program is run. Any command-line parameters used when running the program are entered
onto the stack, and the stack pointer is set to the bottom of the data elements. Following that is the area
where you can place your program data.

The analogy typically used to describe the stack is to think of a stack of plates. As each plate is placed on
the top of the plate stack, it becomes the next in line to be taken off from the top. As each data element is
placed at the top of the memory stack, it becomes the next in line to be retrieved from the stack. It is not
possible to remove a data value from the middle of the stack (although you can cheat and peek at the
value).

As each data element is added to the stack area, a pointer is used to keep track of where the start of the
stack is. The ESP register contains the memory address of the start of the stack. While not prohibited, it is
not advisable to use the ESP register for any other purpose in your program. If the program loses track
of the start of the stack, odd things can happen.

It is your responsibility as the assembly language programmer to keep track of what data is in the stack,
and to retrieve it appropriately. As you will see in Chapter 11, “Using Functions,” the stack is an impor-
tant element in passing data between functions. If you place extraneous data onto the stack without set-
ting the stack pointer appropriately, your functions may pick up the wrong values as the passed
arguments.

Instead of manually setting and worrying about the stack pointer, the IA-32 instruction set includes
some instructions to help you along. The next section describes the two instructions used for accessing
data in the stack.

PUSHing and POPing data

Placing new data items in the stack is called pushing. The instruction used to perform this task is the
PUSH instruction.

The simple format of the PUSH instruction is
pushx source

where x is a one-character code for the size of the data, and source is the data element to place on the
stack. The data elements that you can PUSH are as follows:

Q 16-bit register values
32-bit register values
16-bit memory values
32-bit memory values

16-bit segment registers

U 000 0o

8-bit immediate data values

120

Moving Data

a 16-bit immediate data values

d 32-bit immediate data values

The character used to represent the data size is the same format as for the MOV instructions, although
only the 16- and 32-bit data values are allowed to be pusH’d:

Q 1 foralong word (32 bits)

Q wforaword (16 bits)

The size code must match the data element declared in the instruction or an error will occur. Some exam-
ples of using the PUSH instruction are as follows:

pushl %ecx # puts the 32-bit value of the ECX register on the stack
pushw %$cx # puts the 16-bit value of the CX register on the stack

pushl $100 # puts the value of 100 on the stack as a 32-bit integer value
pushl data # puts the 32-bit data value referenced by the data label
pushl $data # puts the 32-bit memory address referenced by the data label

Note the difference between using the label data versus the memory location $data. The first format
(without the dollar sign) places the data value contained in the memory location in the stack, whereas
the second format places the memory address referenced by the label in the stack.

Now that you have all the data on the stack, it’s time to retrieve the data from the stack. The POP instruc-
tion is used for doing that part.

Similar to the PUSH instruction, the POP instruction uses the following format:
popx destination

where x is the one-character code for the size of the data element, and destination is the location to
receive the data. The following data elements can be used to receive data using the POP instruction:
Q 16-bit registers
Q 16-bit segment registers
Q 32-bit registers
Q 16-bit memory locations
Q 32-bit memory locations

Obviously, you cannot place data from the stack into an immediate data value. Some examples of using
the POP instruction are as follows:

popl %ecx # place the next 32-bits in the stack in the ECX register

popw %Cx # place the next 16-bits in the stack in the CX register
popl value # place the next 32-bits in the stack in the value memory location

121

Chapter 5

The pushpop. s program is an example of pushing and popping various data types on the stack:

pushpop.s - An example of using the PUSH and POP instructions
.section .data
data:

.int 125

.section .text
.globl _start
_start:
nop
movl $24420, %ecx
movw $350, %bx
movb $100, %eax
pushl %ecx
pushw %bx
pushl %eax
pushl data
pushl S$data

popl %eax
popl %eax
popl %eax
popw %ax

popl %eax
movl $0, %ebx
movl $1, %eax
int $0x80

Although this is a somewhat trivial example, it will give you a good idea of how the stack works. Run
the program in the debugger, and watch the values of the ESP register as the PUSH instructions are exe-
cuted. You should see the ESP register decrease with each data element added to the stack, pointing to
the new start of the stack. This shows that the stack is indeed moving downward in memory.

When I started the program, the ESP register contained the following value:

(gdb) print/x Sesp
$1 = 0xbffffd70

After completing all of the PUSH instructions, it contained the following;:

(gdb) print/x Sesp
$2 = Oxbffffdse

By subtracting the two memory locations, you can see that the ESP pointer has moved 18 bytes. Adding
up the total data PusH’d, it indeed totals 18 bytes.

Likewise, as each data element is removed from the stack using the POP instruction, the ESP register

increases, showing that the stack is shrinking back upwards in memory. After the last POP, it should
equal its original value.

122

Moving Data

PUSHing and POPing all the registers

The following table describes a few additional PUSH and POP instructions that can come in handy.

Instruction Description

PUSHA /POPA Push or pop all of the 16-bit general-purpose registers
PUSHAD/POPAD Push or pop all of the 32-bit general-purpose registers
PUSHEF/POPFE Push or pop the lower 16 bits of the EFLAGS register
PUSHFD/POPFD Push or pop the entire 32 bits of the EFLAGS register

The PUSHA and POPA instructions are great for quickly setting aside and retrieving the current state of all
the general-purpose registers at once. The PUSHA instruction pushes the 16-bit registers so they appear
on the stack in the following order: DI, ST, BP, BX, DX, CX, and finally, 2X. The PUSHAD instruction pushes
the 32-bit counterparts of these registers in the same order. The POPA and POPAD instructions retrieve the
registers in the reverse order they were pushed.

The behavior of the POPF and POPFD instructions varies depending on the processor mode of operation.
When the processor is running in protected mode in ring 0 (the privileged mode), all of the nonreserved
flags in the EFLAGS register can be modified, with the exception of the vip, VIF, and vM flags. The vIip
and VIF flags are cleared, and the vM flag is not modified.

When the processor is running in protected mode in a higher level ring (an unprivileged mode), the
same results as the ring 0 mode are obtained, and the I0FL field is not allowed to be modified.

Manually using the ESP and EBP registers

The pUsH and POP instructions are not the only way to get data onto and off of the stack. You can also
manually place data on the stack by utilizing the ESP register as a memory pointer.

Often, instead of using the ESP register itself, you will see many programs copy the ESP register value to
the EBP register. It is common in assembly language functions to use the EBP pointer to point to the base
of the working stack space for the function. Instructions that access parameters stored on the stack refer-
ence them relative to the EBP value (this is discussed in detail in Chapter 11, “Using Functions”).

Optimizing Memory Access

Memory access is one of the slowest functions the processor performs. When writing assembly language
programs that require high performance, it is best to avoid memory access as much as possible.
Whenever possible, it is best to keep variables in registers on the processor. Register access is highly
optimized for the processor, and is the quickest way to handle data.

123

Chapter 5

When it is not possible to keep all of the application data in registers, you should try to optimize the
memory access for the application. For processors that use data caching, accessing memory in a sequen-
tial order in memory helps increase cache hits, as blocks of memory will be read into cache at one time.

One other item to think about when using memory is how the processor handles memory reads and
writes. Most processors (including those in the IA-32 family) are optimized to read and write memory
locations in specific cache blocks, beginning at the start of the data section. On a Pentium 4 processor, the
size of the cache block is 64 bits. If you define a data element that crosses a 64-bit block boundary, it will
require two cache operations to retrieve or store the data element in memory.

To solve this problem, Intel suggests following these rules when defining data:

Q Align 16-bit data on a 16-byte boundary.
Align 32-bit data so that its base address is a multiple of four.
Align 64-bit data so that its base address is a multiple of eight.

Q
Q
Q Avoid many small data transfers. Instead, use a single large data transfer.
Q

Avoid using larger data sizes (such as 80- and 128-bit floating-point values) in the stack.

Aligning data within the data section can be tricky. The order in which data elements are defined can be
crucial to the performance of your application. If you have a lot of similarly sized data elements, such as
integer and floating-point values, place them together at the beginning of the data section. This ensures
that they will maintain the proper alignment. If you have a lot of odd-sized data elements, such as
strings and buffers, place those at the end of the data section so they won’t throw off the alignment of
the other data elements.

The gas assembler supports the .align directive, which is used to align defined data elements on spe-
cific memory boundaries. The .align directive is placed immediately before the data definition in the
data section, instructing the assembler to position the data element on a memory boundary (this is
shown in Chapter 17, “Using Advanced IA-32 Features”).

Summary

This chapter discussed the crucial topic of moving data within your program. Almost every program
must move data elements between memory and registers. Doing this requires knowing only a handful of
instruction codes.

Before you can move data, you must be able to define it in your programs. The data and bss sections in
the program provide areas where data can be defined. The data section enables you to define default
values for data elements, such as strings, integers, and floating-point numbers. The bss section enables
you to reserve large quantities of space for buffers without having to assign default values. By default,
the bss section assigns zeros to all data bytes.

The MOV instruction is essential for moving data. It can move data from one register to another register,

from a memory location to a register, or from a register to a memory location. It cannot, however, move
data from one memory location to another memory location.

124

Moving Data

The MOV instruction must also include an ending character to denote the size of the data: 1 for 32 bits, w
for 16 bits, and b for 8 bits. The two operands are the source location and the destination location (and
remember, these are in opposite order from the Intel format).

Besides the standard MOV instructions, there are also conditional move instructions. These instructions
move data between locations under specific conditions. The cMOV instructions observe the carry, parity,
overflow, sign, and zero flags to determine whether a move should be made or not.

Another class of instructions is the data exchange instructions. These instructions can swap the values of
two separate registers, or a register and a memory location, in a single instruction. The XCHG instruction
is used to exchange values automatically. The CMPXCHG and CMPXCHGSB instructions first compare the
destination value with a specific external value. If they match, the exchange with the source register is
made. If not, the destination value is placed in the external location. The BSWAP instruction is used for
swapping the high-order and low-order bytes in a register. It comes in handy if you need to communi-
cate between big-endian and little-endian machines.

Finally, the memory stack was discussed. The stack is a place in memory where data can be placed by
one function or operation, and retrieved by a separate function or operation. This is the place where data
can be easily passed between functions. It is also used for local variables to functions.

The next chapter tackles the subject of altering the execution flow of a program. Almost all assembly lan-
guage programs utilize some type of execution flow statements to alter the behavior of the program
depending on the variable values during runtime. Being able to control the execution flow of the pro-
gram, as well as being able to program the execution flow as smoothly as possible, are two topics that all
assembly language programmers need to understand.

125

Controlling
Execution Flow

When the processor runs your programs, it is unlikely that it will start with the first instruction
and proceed sequentially through all the instructions in the program until the last instruction.
Instead, your program will most likely use branches and loops to perform the necessary logic to
implement the functions it needs.

Similar to high-level languages, assembly language provides instructions to help the programmer
code logic into applications. By jumping to different sections of the program, or looping through
sections multiple times, you can alter the way the program handles data.

This chapter describes the different assembly language instructions used to do jumps and loops.
Because both of these functions manipulate the instruction pointer, the first section provides a
brief refresher on how the instruction pointer is used to keep track of the next instruction to pro-
cess, and what instructions can alter the instruction pointer. The next section discusses uncondi-
tional branches and demonstrates how they are used in assembly language programs. After that,
conditional branches are presented, showing how they can be used to implement logic functions in
the application. The next two sections describe loops, special instructions that enable the program
to loop through data for a predetermined number of times. Finally, you will learn some tips for
optimizing programs that utilize jumps and loops.

The Instruction Pointer

Before diving into the details of changing the course of the program, it is a good idea to first
understand how the program is executed on the processor. The instruction pointer is the traffic cop
for the processor. It determines which instruction in the program is the next in line to be executed.
It proceeds in a sequential manner through the instruction codes programmed in the application.

Chapter 6

However, as described in Chapter 2, “The IA-32 Platform,” it is not always an easy task to determine
when and where the next instruction is. With the invention of the instruction prefetch cache, many
instructions are preloaded into the processor cache before they are actually ready to be executed. With
the invention of the out-of-order engine, many instructions are even executed ahead of time in the appli-
cation, and the results are placed in order as required by the application by the retirement unit.

With all of this confusion, it can be difficult to determine what exactly is the “next instruction.” While
there is a lot of work going on behind the scenes to speed up execution of the program, the processor
still needs to sequentially step through the program logic to produce the proper results. Within that
framework, the instruction pointer is crucial to determining where things are in the program. This is
shown in Figure 6-1.

Memory

C3 Instruction Codes Assembly Code
0x0804807E 89 B8 00 00 00 00 movl $0, %eax

00 BF OA 00 00 00 movl $10, %edi <«

89 C3 movl %eax, %ebx

00

00

OA

next

0x08048079 BF < instruction

00

00

00

00 EIP
0x08048074 B8 0x08048079

Figure 6-1

An instruction is considered executed when the processor retirement unit executes the result from the
out-of-order engine from the instruction. After that instruction is executed, the instruction pointer is
incremented to the next instruction in the program code. That instruction may or may not have already
been performed by the out-of-order engine, but either way, the retirement unit does not process its
results until it is time to do so in the program logic.

128

Controlling Execution Flow

As the instruction pointer moves through the program instructions, the EIP register is incremented.
Remember, instructions can be multiple bytes in length, so pointing to the next instruction is more than
just incrementing the instruction pointer by one each time.

Your program cannot directly modify the instruction pointer. You do not have the capability to directly
change the value of the EIP register to point to a different location in memory with a MOV instruction.
You can, however, utilize instructions that alter the value of the instruction pointer. These instructions
are called branches.

A branch instruction can alter the value of the EIP register either unconditionally (unconditional
branches), or based on a value of a condition (conditional branches). The following sections describe
unconditional and conditional branches and show how they affect the instruction pointer and the course
of the program logic.

Unconditional Branches

When an unconditional branch is encountered in the program, the instruction pointer is automatically
routed to a different location. You can use three types of unconditional branches:

Q Jumps

Q Calls

Q Interrupts
Each of these unconditional branches behaves differently within the program, and it is up to you to
decide which one to use within the program logic. The following sections describe the differences

between each of these types of unconditional branches and how to implement them in your assembly
language programs.

Jumps

The jump is the most basic type of branch used in assembly language programming. If you are familiar
with the BASIC programming language, you have most likely seen GOTO statements. Jump statements
are the assembly language equivalent of the BASIC GOTO statement.

In structured programming, GOTO statements are considered to be a sign of bad coding. Programs are sup-
posed to be compartmentalized and flow in a sequential manner, calling functions instead of jumping
around the program code. In assembly language programs, jump instructions are not considered bad pro-
gramming, and in fact are required to implement many functions. However, they can have a detrimental
impact on your program’s performance (see “Optimizing Branch Instructions” later in this chapter).

The jump instruction uses a single instruction code:
jmp location
where location is the memory address to jump to. In assembly language, the location value is declared

as a label within the program code. When the jump occurs, the instruction pointer is changed to the
memory address of the instruction code located immediately after the label. This is shown in Figure 6-2.

129

Chapter 6

Memory

00

00
00

OA

0x0804808B BB
00
00
00

01

0x08048086 B8

05

EIP

0x08048084 EB Assembly Code

F8 movl %eax, %ebx
addl %ebx, %ecx
0x08048082 01 jmp end
(movl $1, %eax
c3 end:

0x08048080 89 movl $10, %ebx

Figure 6-2

The gMP instruction changes the instruction pointer value to the memory location specified in the gMp
instruction.

Behind the scenes, the single assembly jump instruction is assembled into one of three different types of
jump opcodes:

Q Shortjump

O Near jump

QO Farjump
The three jump types are determined by the distance between the current instruction’s memory location
and the memory location of the destination point (the “jump to” location). Depending on the number of
bytes jumped, the different jump types are used. A short jump is used when the jump offset is less than

128 bytes. A far jump is used in segmented memory models when the jump goes to an instruction in
another segment. The near jump is used for all other jumps.

When using the assembly language mnemonic instruction, you do not need to worry about the length of
the jump. A single jump instruction is used to jump anywhere in the program code (although there may
be a performance difference, as described later in the “Optimizing Branch Instructions” section).

130

Controlling Execution Flow

The following jumptest. s program demonstrates the operation of an unconditional jump instruction:

jumptest.s - An example of the jmp instruction
.section .text
.globl _start
_start:
nop
movl S$1, %eax
jmp overhere
movl $10, %ebx
int $0x80
overhere:
movl $20, %ebx
int $0x80

The jumptest.s program simply assigns the value 1 to the EAX register for the exit Linux system call.
Then, a jump instruction is used to jump over the part where the value 10 is assigned to the EBX register,
and the Linux system call is made. Instead, the program jumps to where the value 20 is assigned to the
EBX register, and the Linux system call is made. You can ensure that the jump occurred by running the
program and checking the result code generated in Linux:

$ as -o jumptest.o jumptest.s
S 1d -o jumptest jumptest.o

S ./jumptest

$ echo $?

20

$

Indeed, the expected result code was produced due to the jump. That in itself might not be too exciting.
Instead, you can watch the actual memory locations used in the program with the debugger and the
objdump programs.

First, you can see how the instruction codes are arranged in memory by using the objdump program to
disassemble the assembled code:

S objdump -D jumptest
Jjumptest: file format elf32-1386
Disassembly of section .text:

08048074 <_start>:

8048074 : 90 nop

8048075: b8 01 00 00 00 mov $0x1, $eax

804807a: eb 07 jmp 8048083 <overhere>
804807c: bb 0a 00 00 00 mov $0xa, $ebx

8048081: cd 80 int $0x80

08048083 <overhere>:

8048083: bb 14 00 00 00 mov $0x14, ¥ebx
8048088: cd 80 int $0x80

S

131

Chapter 6

The disassembler output shows the memory locations that will be used by each instruction (the value
shown in the first column). Now, you can run the jumptest program in the debugger and watch what
happens:

$ as -gstabs -o jumptest.o jumptest.s

$ 1d -o jumptest jumptest.o

$ gdb -g jumptest

(gdb) break *_start+1l

Breakpoint 1 at 0x8048075: file jumptest.s, line 5.
(gdb) run

Starting program: /home/rich/palp/chap06/jumptest

Breakpoint 1, _start () at jumptest.s:5
5 movl $1, %eax

Current language: auto; currently asm
(gdb) print/x Seip

$1 = 0x8048075

(gdb)

After assembling the code for the debugger (using the -gstabs parameter), and setting the breakpoint
at the start of the program, run the program and view the first memory location used (shown in the EIP
register). The value is 0x8048075, which corresponds to the same memory location shown in the obj -
dump output. Next, step through the debugger until the jump instruction has been executed, and then
display the EIP register value again:

(gdb) step

_start () at jumptest.s:6

6 jmp overhere
(gdb) step

overhere () at jumptest.s:10
10 movl $20, %ebx
(gdb) print Seip

$2 = (void *) 0x8048083
(gdb)

As expected, the program jumped to the 0x8048083 location, which is exactly where the overhere label
pointed to, as shown in the objdump output.

Calls

The next type of unconditional branch is the call. A call is similar to the jump instruction, but it remem-
bers where it jumped from and has the capability to return there if needed. This is used when imple-
menting functions in assembly language programs.

Functions enable you to write compartmentalized code; that is, you can separate different functions into
different sections of the text. If multiple areas of the program use the same functions, the same code does

not need to be written multiple times. The single function can be referenced using call statements.

The call instruction has two parts. The first part is the actual CALL instruction, which requires a single
operand, the address of the location to jump to:

call address

132

Controlling Execution Flow

The address operand refers to a label in the program, which is converted to the memory address of the
first instruction in the function.

The second part of the call instruction is the return instruction. This enables the function to return to the
original part of the code, immediately after the CALL instruction. The return instruction has no operands,
just the mnemonic RET. It knows where to return to by looking at the stack. This is demonstrated in
Figure 6-3.

Stack
EIP value
Main Program
Places EIP Function
\ on stack
N function:
call function
ret
Replaces EIP value
Stack from stack
EIP value
Figure 6-3

When the CALL instruction is executed, it places the EIP register onto the stack and then modifies the
EIP register to point to the called function address. When the called function is completed, it retrieves
the old EIP register value from the stack and returns control back to the original program.

How functions return to the main program is possibly the most confusing part of using functions in
assembly language. It is not as simple as just using the RET instruction at the end of a function. Instead,
it relates to how information is passed to functions and how functions read and store that information.

This is all done using the stack. As mentioned in Chapter 5, “Moving Data,” not only can the data on the

stack be referenced using PUSH and POP instructions, it can also be directly referenced using the ESP reg-
ister, which points to the last entry in the stack. Functions normally copy the ESP register to the EBP

133

Chapter 6

register, and then use the EBP register value to retrieve information passed on the stack before the cCALL
instruction, and to place variables on the stack for local data storage (see Chapter 11, “Using Functions”).
This complicates how the stack pointer is manipulated within the function.

This is a somewhat simplified explanation of how functions use the stack. Chapter 11, “Using
Functions,” describes this in great detail, explaining and demonstrating how functions use the stack for
data storage.

The return address is added to the stack when the CALL instruction is executed. When the called func-
tion begins, it must store the ESP register somewhere it can be restored to its original form before the RET
instruction attempts to return to the calling location. Because the stack may also be manipulated within
the function, the EBP register is often used as a base pointer to the stack. Thus, the ESP register is usually
copied to the EBP register at the beginning of the function as well.

While this seems confusing, it is not too difficult if you create a standard template to use for all of your
function calls. The form to remember for functions is as follows:

function_label:
pushl %ebp
movl %esp, %ebp
< normal function code goes here>
movl %ebp, %esp
popl %ebp
ret

Once the EBP register has been saved, it can be used as the base pointer to the stack for all access to the
stack within the function. Before returning to the calling program, the ESP register must be restored to
the location pointing to the calling memory location.

A simple call example is demonstrated in the calltest.s program:

calltest.s - An example of using the CALL instruction
.section .data
output:
.asciz "This is section %d\n"
.section .text
.globl _start
_start:
pushl s$1
pushl Soutput
call printf
add $8, %esp # should clear up stack
call overhere
pushl $3
pushl Soutput
call printf
add $8, %esp # should clear up stack
pushl $0
call exit
overhere:
pushl %ebp

134

Controlling Execution Flow

movl %esp, %ebp
pushl $2

pushl Soutput
call printf

add $8, %esp # should clear up stack
movl %ebp, %esp

popl %ebp

ret

The calltest.s program begins by using the printf C function to display the first text line, showing
where the program is. Next, the CALL instruction is used to transfer control to the overhere label. At the
overhere label, the ESP register is copied to the EBP pointer so it can be restored at the end of the func-
tion. The printf function is used again to display a second line of text, and then the ESp and EBP regis-
ters are restored.

Control of the program returns to the instruction immediately after the CALL instruction, and the third
text line is displayed, again using the printf function. The output should look like this:

S ./calltest

This is section 1
This is section 2
This is section 3

$

Be careful when calling external functions from your application. There is no guarantee that the func-
tion will return your registers in the same way that you left them before the call. This is discussed in
more detail in Chapter 11.

Interrupts

The third type of unconditional branch is the interrupt. An interrupt is a way for the processor to “inter-
rupt” the current instruction code path and switch to a different path. Interrupts come in two varieties:

Q Software interrupts

Q Hardware interrupts

Hardware devices generate hardware interrupts. They are used to signal events happening at the hard-
ware level (such as when an I/O port receives an incoming signal). Programs generate software inter-
rupts. They are a signal to hand off control to another program.

When a program is called by an interrupt, the calling program is put on hold, and the called program
takes over. The instruction pointer is transferred to the called program, and execution continues from
within the called program. When the called program is complete, it can return control back to the calling
program (using an interrupt return instruction).

Software interrupts are provided by the operating system to enable applications to tap into functions
within the operating system, and in some cases even the underlying BIOS system. In the Microsoft DOS
operating system, many functions are provided with the 0x21 software interrupt. In the Linux world, the
0x80 interrupt is used to provide low-level kernel functions.

135

Chapter 6

You have already seen several examples of using the software interrupt in many of the example pro-
grams presented so far. Simply using the INT instruction with the 0x80 value transfers control to the
Linux system call program. The Linux system call program has many subfunctions that can be used.
The subfunctions are performed based on the value of the EAX register at the time of the interrupt. For
example, placing the value of 1 in the EAX register before the interrupt calls the exit Linux system call
function.

Chapter 12, “Using Linux System Calls,” describes all of the functions available with the 0x80
interrupt.

When debugging an application that contains software interrupts, it is difficult to see what is happening
within the interrupt section, as the debugging information is not compiled into the functions. You may
have noticed when running the debugger that it performs the interrupt instruction but then immediately
returns back to the normal program.

Conditional Branches

Unlike unconditional branches, conditional branches are not always taken. The result of the conditional
branch depends on the state of the EFLAGS register at the time the branch is executed.

There are many bits in the EFLAGS register, but the conditional branches are only concerned with five
of them:

Carry flag (CF) - bit 0 (lease significant bit)
Overflow flag (OF) - bit 11

Parity flag (PF) - bit 2

Sign flag (SF) - bit 7

Q Zero flag (ZF) - bit 6

0O 0 0O O

Each conditional jump instruction examines specific flag bits to determine whether the condition is
proper for the jump to occur. With five different flag bits, several jump combinations can be performed.
The following sections describe the individual jump instructions.

Conditional jump instructions

The conditional jumps determine whether or not to jump based on the current value of the EFLAGS reg-
ister. Several different conditional jump instructions use different bits of the EFLAGS register. The format
of the conditional jump instruction is

jxx address
where xx is a one- to three-character code for the condition, and address is the location within the pro-

gram to jump to (usually denoted by a label). The following table describes all of the conditional jump
instructions available.

136

Controlling Execution Flow

Instruction Description EFLAGS

JA Jump if above CF=0 and ZF=0
JAE Jump if above or equal CF=0

JB Jump if below CF=1

JBE Jump if below or equal CF=1 or ZF=1
JC Jump if carry CF=1

JCXZ Jump if CX register is 0

JECXZ Jump if ECX register is 0

JE Jump if equal ZF=1

JG Jump if greater ZF=0 and SF=OF
JGE Jump if greater or equal SF=OF

JL Jump if less SF<>OF

JLE Jump if less or equal ZF=1 or SF<>OF
JNA Jump if not above CF=1 or ZF=1
JNAE Jump if not above or equal CF=1

JNB Jump if not below CF=0

JNBE Jump if not below or equal CF=0 and ZF=0
JNC Jump if not carry CF=0

JNE Jump if not equal ZF=0

JNG Jump if not greater ZF=1 or SE<>OF
JNGE Jump if not greater or equal SF<>OF

JNL Jump if not less SF=OF

JNLE Jump if not less or equal ZF=0 and SF=OF
JNO Jump if not overflow OF=0

JNP Jump if not parity PF=0

JNS Jump if not sign SF=0

JNZ Jump if not zero ZF=0

JO Jump if overflow OF=1

JP Jump if parity PF=1

JPE Jump if parity even PF=1

JPO Jump if parity odd PF=0

JS Jump if sign SF=1

JZ Jump if zero ZF=1

137

Chapter 6

You may notice that many of the conditional jump instructions seem redundant (such as Ja for jump if
above and JG jump if greater). The difference is when working with signed and unsigned values. The
jump instructions using the above and lower keywords are used for evaluating unsigned integer values.
You will learn more about the different types of integers in Chapter 7, “Using Numbers.”

The conditional jump instructions take a single operand in the instruction code — the address to jump to.
While usually a label in an assembly language program, the operand is converted into an offset address
in the instruction code. Two types of jumps are allowed for conditional jumps:

Q Short jumps
O Near jumps

A short jump uses an 8-bit signed address offset, whereas a near jump uses either a 16-bit or 32-bit
signed address offset. The offset value is added to the instruction pointer.

Conditional jump instructions do not support far jumps in the segmented memory model. If you are
programming in the segmented memory model, you must use programming logic to determine whether
the condition exists, and then implement an unconditional jump to the instructions in the separate
segment.

To be able to use a conditional jump, you must have an operation that sets the EFLAGS register before the
conditional jump. The next section shows some examples of using conditional jumps in assembly lan-
guage programs.

The compare instruction

The compare instruction is the most common way to evaluate two values for a conditional jump. The
compare instruction does just what its name says, it compares two values and sets the EFLAGS registers
accordingly.

The format of the CMP instruction is as follows:

cmp operandl, operand2
The cMP instruction compares the second operand with the first operand. It performs a subtraction oper-
ation on the two operands behind the scenes (operand2 — operand1l). Neither of the operands is modi-
fied, but the EFLAGS register is set as if the subtraction took place.

When using the GNU assembler, remember that operandl and operand2 are the reverse from what

is described in the Intel documentation for the cMp instruction. This little feature has caused many
hours of debugging nightmares for many an assembly language programmer.

138

Controlling Execution Flow

The following cmptest . s program is shown as a quick demonstration of how the compare and condi-
tional jump instructions work together:

cmptest.s - An example of using the CMP and JGE instructions
.section .text
.globl _start
_start:
nop
movl $15, %eax
movl $10, %ebx
cmp %$eax, %ebx
jge greater
movl S$1, %eax
int $0x80
greater:
movl $20, %ebx
movl $1, %eax
int $0x80

The cmptest. s program first assigns to immediate data values: the value 15 to the EAX register, and the
value 10 to the EBX register. Next, the CMP instruction is used to compare the two registers, and the JGE
instruction is used to branch, depending on the values:

cmp %$eax, %ebx
jge greater

Because the value of the EBX register is less than the value of EAX, the conditional branch is not taken.
The instruction pointer moves on to the next instruction, which moves the immediate value of 1 to the
EAX register, and then calls the Linux exit system call. You can test this by running the program and dis-
playing the result code:

S ./cmptest
$ echo §$?
10

$

Indeed, the branch was not taken, and the value in the EBX register remained at 10.

The preceding example compared the values of two registers. Following are some other examples of the
CMP instruction:

cmp $20, %ebx ; compare EBX with the immediate value 20
cmp data, %ebx ; compare EBX with the value in the data memory location
cmp (%edi), %ebx ; compare EBX with the value referenced by the EDI pointer

139

Chapter 6

Examples of using the flag bits

Trying to code conditional jump instructions can be tricky. It helps to have an understanding of each of
the flag bits that must be present in order for the different conditions to be met. The following sections

demonstrate how each of the flag bits affect the conditional jumps, so you can get a feeling for what to

look for when coding your programming logic.

Using the Zero flag

The Zero flag is the easiest thing to check when doing conditional jumps. The JE and Jz instructions
both branch if the Zero flag is set (the two operands are equal). The Zero flag can be set by either a cvp
instruction or a mathematical instruction that evaluates to Zero, as shown in the following example:

movl $30, %eax
subl $30, %eax
jz overthere

The Jz instruction would be performed, as the result of the SUB instruction would be Zero (the SUB
instruction is covered in Chapter 8, “Basic Math Functions”).

You can also use the Zero flag when decreasing the value of a register to determine whether it has
reached Zero:

movl $10, %edi
loopl:
< other code instructions>
dec %edi
jz out
jmp loopl
out:

This code snippet uses the EDI register as an indexed counter that counts back from 10 to 1 (when it
reaches zero, the Jz instruction will exit the loop).

Using the overflow flag

The overflow flag is used specifically when working with signed numbers (see Chapter 7). It is set when
a signed value is too large for the data element containing it. This usually happens during arithmetic
operations that overflow the size of the register holding the data, as shown in the following example:

movl $1, %eax ; move 1 to the EAX register
movb $0x7f, %bl ; move the signed value 127 to the 8-bit BL register
addb $10, %bl ; Add 10 to the BL register
jo overhere
int $0x80 ; call the Linux system call
overhere:
movl $0, %ebx ; move 0 to the EBX register
int $0x80 ; call the Linux system call

This code snippet adds 10 to a signed byte value of 127. The result would be 137, which is a valid value
in the byte, but not within a signed byte number (which can only use —127 to 127). Because the signed
value is not valid, the overflow flag is set, and the Jo instruction is implemented.

140

Controlling Execution Flow

Using the parity flag

The parity flag indicates the number of bits that should be one in a mathematical answer. This can be
used as a crude error-checking system to ensure that the mathematical operation was successful.

If the number of bits set to one in the resultant is even, the parity bit is set (one). If the number of bits set
to one in the resultant is odd, the parity bit is not set (zero).

To test this concept, you can create the paritytest.s program:

paritytest.s - An example of testing the parity flag
.section .text
.globl _start
_start:
movl S$1, %eax
movl $4, %ebx
subl $3, %ebx
jp overhere
int $0x80
overhere:
movl $100, %ebx
int $0x80

In this snippet, the result from the subtraction is 1, which in binary is 00000001. Because the number of
one bits is odd, the parity flag is not set, so the JP instruction should not branch; instead, the program
should exit with a result code of the result of the subtraction, 1:

$./paritytest
$ echo $?

1

S

To test the opposite, change the SUB instruction line to create a result with an even number of one bits:

subl $1, %ebx

The result of this subtraction will be 3, which in binary is 00000011. Because this is an even number of
one bits, the parity flag will be set, and the Jp instruction should branch to the overhere label, setting
the result code to 100:

S ./paritytest
$ echo §$7?

100

$

Yes, it worked as expected!

Using the sign flag

The sign flag is used in signed numbers to indicate a sign change in the value contained in the register.
In a signed number, the last (highest order) bit is used as the sign bit. It indicates whether the numeric
representation is negative (set to 1) or positive (set to 0).

141

Chapter 6

This is handy when counting within a loop and watching for zero. You saw with the Zero flag that the
flag was set when the value that was being decreased reached zero. However, if you are dealing with
arrays, most likely you also need to stop after the zero value, not at the zero value (because the first
offset is 0).

Using the sign flag, you can tell when a value has passed from 0 to -1, as shown in the following
signtest.s program:

signtest.s - An example of using the sign flag
.section .data
value:
.int 21, 15, 34, 11, 6, 50, 32, 80, 10, 2
output:
.asciz "The value is: %d\n"
.section .text
.globl _start
_start:
movl $9, %edi
loop:
pushl value(, %edi, 4)
pushl Soutput
call printf
add $8, Sesp
dec %edi
jns loop
movl $1, %eax
movl $0, %ebx
int $0x80

The signtest.s program walks backward through a data array using the EDI register as an index,
decreasing it for each array element. The JNS instruction is used to detect when the value of the EDI
register becomes negative, and loops back to the beginning if not.

Because the signtest. s program uses the printf C function, remember to link it with the dynamic
loader (as described in Chapter 4, “A Sample Assembly Language Program”). The output from the pro-
gram should look like this:

$./signtest

The value is: 2

The value is: 10
The value is: 80
The value is: 32
The value is: 50
The value is: 6

The value is: 11
The value is: 34
The value is: 15
The value is: 21

$

142

Controlling Execution Flow

Using the carry flag

The carry flag is used in mathematical expressions to indicate when an overflow has occurred in an
unsigned number (remember that signed numbers use the overflow flag). The carry flag is set when an
instruction causes a register to go beyond its data size limit.

Unlike the overflow flag, the DEC and INC instructions do not affect the carry flag. For example, this code
snippet will not set the carry flag:

movl SOxXffffffff, %ebx
inc %$ebx
jc overflow

However, this code snippet will set the carry flag, and the JC instruction will jump to the overflow
location:

movl SOxXffffffff, %ebx
addl $1, %ebx
jc overflow

The carry flag will also be set when an unsigned value is less than zero. For example, this code snippet
will also set the carry flag:

movl $2, %eax
subl $4, %eax
jc overflow

The resulting value in the EAX register is 254, which represents -2 as a signed number, the correct
answer. This means that the overflow flag would not be set. However, because the answer is below zero
for an unsigned number, the carry flag is set.

Unlike the other flags, there are instructions that can specifically modify the carry flag. These are
described in the following table.

Instruction Description

CLC Clear the carry flag (set it to zero)

CMC Complement the carry flag (change it to the opposite of what is set)
STC Set the carry flag (set it to one)

Each of these instructions directly modifies the carry flag bit in the EFLAGS register.

143

Chapter 6

Loops

Loops are another way of altering the instruction path within the program. Loops enable you to code
repetitive tasks with a single loop function. The loop operations are performed repeatedly until a spe-
cific condition is met.

The following sections describe the different loop instructions available for you to use and show an
example of using loops within an assembly language program.

The loop instructions

In the signtest.s example program shown in the section “Using the sign flag,” you created a loop by
using a jump instruction and decreasing a register value. The IA-32 platform provides a simpler mecha-
nism for performing loops in assembly language programs: the loop instruction family.

The loop instructions use the ECX register as a counter and automatically decrease its value as the loop
instruction is executed. The following table describes the instructions in the loop family.

Instruction Description

LOOP Loop until the ECX register is zero

LOOPE/LOOPZ Loop until either the ECX register is zero, or the ZF flag is not set
LOOPNE/LOOPNZ Loop until either the ECX register is zero, or the ZF flag is set

The LOOPE/LOOPZ and LOOPNE/LOOPNZ instructions provide the additional benefit of monitoring the
Zero flag.

The format for each of these instructions is
loop address

where address is a label name for a location in the program code to jump to. Unfortunately, the loop
instructions support only an 8-bit offset, so only short jumps can be performed.

Before the loop starts, you must set the value for the number of iterations to perform in the ECX register.
This usually looks something like the following:

< code before the loop >
movl $100, %ecx

loopl:
< code to loop through >
loop loopl
< code after the loop >

Be careful with the code inside the loop. If the ECX register is modified, it will affect the operation of the

loop. Use extra caution when implementing function calls within the loop, as functions can easily trash
the value of the ECX register without you knowing it.

144

Controlling Execution Flow

An added benefit of the loop instructions is that they decrease the value of the ECX register without
affecting the EFLAGS register flag bits. When the ECX register reaches zero, the Zero flag is not set.

A loop example

As a simple example to demonstrate how the LOOP instruction works, here’s the 1oop. s program:

loop.s - An example of the loop instruction
.section .data
output:
.asciz "The value is: %d\n"
.section .text
.globl _start
_start:
movl $100, %ecx
movl $0, %eax
loopl:
addl %ecx, %eax
loop loopl
pushl %eax
pushl Soutput
call printf
add $8, %esp
movl S$1, %eax
movl $0, %ebx
int $0x80

The loop.s program computes the arithmetic series of the number stored in the ECX register and then
displays it on the console (using the printf function, so remember to link with the C library and the
dynamic linker). The LOOP instruction is used to continually loop through the ADD function until the
value of ECX is zero.

Preventing LOOP catastrophes

There is one common problem with the LOOP instruction that sometimes bites assembly language pro-
grammers. What if you used the 1oop.s example program and set the ECX register to zero? Try it and
see what happens. Here’s the output when I tried it:

S ./loop
The value is: -2147483648
S

That is obviously not the correct answer. So what happened? The answer lies in the way the LooP
instruction behaves. When the LOOP instruction is executed, it first decreases the value in ECX by one,
and then it checks to see whether it is zero. Using this logic, if the value of ECX is already zero before the
LOOP instruction, it will be decreased by one, making it -1. Because this value is not zero, the Loop
instruction continues on its way, looping back to the defined label. The loop will eventually exit when
the register overflows, and the incorrect value is displayed.

145

Chapter 6

To correct this problem, you need to check for the special condition when the ECX register contains a
zero value. Fortunately, Intel has provided a special instruction just for that purpose. If you remember
from the “Conditional Branches” section earlier, the JCXz instruction is used to perform a conditional
branch if the ECX register is zero. This is exactly what we need to solve this problem.

The betterloop.s program uses the JCXz instruction to provide some rudimentary error-checking for
the application:

betterloop.s - An example of the loop and jcxz instructions
.section .data
output:
.asciz "The value is: %d\n"
.section .text
.globl _start
_start:
movl $0, %ecx
movl $0, %eax
jexz done
loopl:
addl %ecx, %eax
loop loopl
done:
pushl %eax
pushl Soutput
call printf
movl $1, %eax
movl $0, %ebx
int $0x80

The betterloop.s program adds a single instruction, the JCxz instruction, before the loop starts, and
a single label to reference the ending instruction codes. Now if the ECX register contains a zero value,
the JCcxz instruction catches it, and immediately goes to the output section. Running the program
demonstrates that indeed it solves the problem:

$./betterloop
The value is: 0

$

Duplicating High-Level
Conditional Branches

If you program in C, C++, Java, or any other high-level language, you probably use a lot of conditional
statements that look completely different from the assembly language ones. You can mimic the high-
level language functions using the assembly language code you learned in this chapter.

The easiest way to learn how to code high-level functions in assembly language is to see how the assem-
bler does it. The following sections walk through disassembling C language functions to show how they
are performed using assembly language.

146

Controlling Execution Flow

if statements

The most common conditional statement used in high-level languages is the i f statement. The following
program, ifthen.c, demonstrates how this is commonly used in C programs:

/* ifthen.c - A sample C if-then program */
#include <stdio.h>

int main()
{
int a = 100;
int b = 25;
if (a > b)
{
printf ("The higher value is %d\n", a);
} else
printf ("The higher value is %d\n", b);
return 0;

}

Because the purpose of this exercise is to see how the code will be converted to assembly language, the
actual C program is pretty trivial —just a simple comparison of two known values. You can view the
generated assembly language code by using the -s parameter of the GNU compiler:

S gcc -S ifthen.c
$ cat ifthen.s

.file "ifthen.c"
.section .rodata
.LCO:
.string "The higher value is %d\n"
.text
.globl main
.type main, @function
main:
pushl $ebp
movl %esp, %ebp
subl $24, %esp
andl $-16, %esp
movl $0, %eax
subl %eax, %esp
movl $100, -4 (%ebp)
movl $25, -8 (%ebp)
movl -4 (%ebp), %eax
cmpl -8 (%ebp), %eax
jle L2
movl -4 (%ebp), %eax
movl $eax, 4 (%esp)
movl $.LCO, (%esp)
call printf
jmp .L3
L2:

147

Chapter 6

movl -8(%ebp), %eax

movl %eax, 4 (%esp)

movl $.LCO, (%esp)

call printf
LL3:

movl $0, (%esp)

call exit

.size main, .-main

.section .note.GNU-stack, "", @progbits

.ident "GCC: (GNU) 3.3.2 (Debian)"
$

That’s a lot of assembly code for a simple C function! Now you can see why I wanted to keep the C code
simple. Now we can walk through the code step by step to see what it is doing.

The first section of the code:

pushl %ebp

mov1l %esp, %ebp
subl $24, %esp
andl $-16, %esp
movl S0, %eax
subl %eax, %esp

stores the EBP register so it can be used as a pointer to the local stack area in the program. The stack
pointer, ESP, is then manually manipulated to make room for putting local variables on the stack.

The next section of the code creates the two variables used in the If statement:

[

%ebp)
ebp)

movl
movl

$100,
$25,

-4
-8(%
The first instruction manually moves the value for the a variable into a location on the stack (4 bytes in
front of the location pointed to by the EBP register). The second instruction manually moves the value
for the b variable into the next location on the stack (8 bytes in front of the location pointed to by the EBP
register). This technique, commonly used in functions, is discussed in Chapter 11. Now that both vari-
ables are stored on the stack, it’s time to execute the i f statement:

movl -4 (%ebp), %eax
cmpl -8 (%ebp), %eax
jle L2

First, the value for the a variable is moved to the EAX register, and then that value is compared to the
value for the b variable, still in the local stack. Instead of looking for the i f condition a > b, the assembly
language code is looking for the opposite, a <= b. If the statement evaluates to “true,” the jump to the
.L2 label is made, which is the “else” part of the If statement:

L2
mov1l -8(%ebp), %eax
movl %eax, 4(%esp)
mov1l $.LCO, (%esp)
call printf

148

Controlling Execution Flow

This is the code to print the answer for the b variable, which was contained in the else part of the If state-
ment. First the b variable value is retrieved and manually placed on the stack, and then the location of
the output text (located at the . LCO label) is placed on the stack. With both elements on the stack, the
printf C function is called to display the answer. The code then proceeds to the ending instructions.

If the JLE instruction was false, then a is not less than or equal to b, and the jump is not performed.
Instead, the “then” part of the If statement is performed:

movl -4 (%ebp), %eax
movl $eax, 4 (%esp)
movl $S.LCO, (%esp)
call printf

jmp .L3

Here, the a variable is loaded onto the stack, along with the output text. Then the printf C function is
called to display the answer, and execution jumps to the .L3 label. Finally, all roads load to the exit C
function:

L3
movl $0, (%esp)
call exit
.size main, .-main
.section .note.GNU-stack, "", @progbits

.ident "GCC: (GNU) 3.3.2 (Debian)"

It is pretty easy to see the if-then logic contained in the assembly language code. You can apply the same
logic to any if-then situation you need in your assembly language programs.

At first it may appear that the implementation of the if-then logic in assembly language is backwards.
It might seem to be easier for the jump instruction to evaluate for the “true” condition to jump to the
“then” section. There is a reason why the opposite situation is used, which is shown in the “Optimizing
Branch Instructions” section later in this chapter.

The assembly language code used to implement an i f statement looks like the following;:

if:
<condition to evaluate>
jxx else ; jump to the else part if the condition is false
<code to implement the "then" statements>
jmp end ;jump to the end
else:
< code to implement the "else" statements>
end:

Of course, this was a trivial example of an If statement. In a real production program, the condition to
evaluate becomes much more complicated. In these situations, evaluating the condition for the if state-

ment becomes just as crucial as the If statement code itself.

Instead of a single conditional jump instruction, there may be several, with each one evaluating a sepa-
rate part of the if condition. For example, the C language if statement

if (eax < ebx) || (eax == ecx) then

149

Chapter 6

creates the following assembly language code:

if:
cmpl %eax, %$ebx
jle else
cmpl %eax, %$ecx
jne else
then:
< then logic code>
jmp end
else:
< else logic code >
end:

This If statement condition required two separate CMP instructions. Because the logical operator is
an OR, if either cMP instruction evaluates to true, the program jumps to the else label. If the logical
operator is an AND, you would need to use an intermediate label to ensure that both cMP instructions
evaluate to true.

for loops

The next statement to tackle is for loops. Here’s the sample C program used to start us off, the for.c
program:

/* for.c - A sample C for program */
#include <stdio.h>

int main()
{
int i = 0;
int j;
for (1 = 0; 1 < 1000; 1i++)
{
j =1 *5;
printf ("The answer is %d\n", j);
}
return 0;

}

Again, this uses a pretty simplistic C program to demonstrate how for-next loops are implemented in
assembly language code. Here’s the assembly code generated by the GNU compiler:

$ gcc -S for.c
$ cat for.s
.file "for.c"
.section .rodata
.LCO:
.string "The answer is %d\n"
.text
.globl main
.type main, @function

150

Controlling Execution Flow

main:
pushl $ebp
movl %esp, %ebp

subl $24, %esp
andl $-16, %esp

movl S0, %eax
subl $eax, %esp
movl S0, -4 (%ebp)
movl $0, -4(%ebp)
L2:
cmpl $999, -4 (%ebp)
jle .L5
Jjmp .L3
.L5:
movl -4 (%ebp), %edx
movl %edx, %eax
sall $2, %eax
addl %edx, %eax
movl $eax, -8(%ebp)
movl -8 (%ebp), %eax
movl $eax, 4 (%esp)
movl $.LCO, (%esp)
call printf
leal -4 (%ebp), %eax
incl (%eax)
jmp L2
L3
movl $0, (%esp)
call exit
.size main, .-main
.section .note.GNU-stack, "", @progbits
.ident "GCC: (GNU) 3.3.2 (Debian)"
$

Similar to the if statement code, the for statement code first does some housekeeping with the ESP and
EBP registers, manually setting the EBP register to the start of the stack, and making room for the vari-
ables used in the function. The for statement starts with the .12 label:

L2
cmpl $999, -4 (%ebp)
jle L5
jmp .L3

The condition set in the for statement is set at the beginning of the loop. In this case, the condition is to
determine whether the variable is less than 1,000. If the condition is true, execution jumps to the .L5
label, where the for loop code is. When the condition is false, execution jumps to the .L3 label, which is
the ending code.

The For loop code is as follows:
.L5:

movl -4 (%ebp), %edx
movl %edx, %eax

151

Chapter 6

sall $2, %eax

addl %edx, %eax
movl %eax, -8(%ebp)
movl -8(%ebp), %eax
mov1l %eax, 4 (%esp)
mov1l $.LCO, (%esp)
call printf

The first variable location (the i variable in the C code) is moved to the EDX register, and then moved to
the EAX register. The next two instructions are mathematical operations (which are covered in detail in
Chapter 8). The CALL instruction performs a left shift of the EAX register two times. This is equivalent to
multiplying the number in the EAX register by 4. The next instruction adds the EDX register value to the
EAX register value. Now the EAX register contains the original value multiplied by 5 (tricky).

After the value has been multiplied by 5, it is stored in the location reserved for the second variable (the
j variable in the C code). Finally, the value is placed on the stack, along with the location of the output

text, and the printf C function is called.

The next part of the code gets back to the for statement function:

leal -4 (%ebp), %eax
incl (%eax)
jmp L2

The LEA instruction has not been discussed yet. It loads the effective memory address of the declared
variable into the register specified. Thus, the memory location of the first variable (i) is loaded into the
EAX register. The next instruction uses the indirect addressing mode to increment the value pointed to by
the EAX register by one. This in effect adds one to the i variable. After that, execution jumps back to the
start of the for loop, where the I value will be tested to determine whether it is less than 1,000, and the
whole process is performed again.

From this example you can see the framework for implementing for loops in assembly language. The
pseudocode looks something like this:

for:
<condition to evaluate for loop counter value>
jxx forcode ; jump to the code of the condition is true
jmp end ; jump to the end if the condition is false
forcode:

< for loop code to execute>

<increment for loop counter>

jmp for ; go back to the start of the For statement
end:

The while loop code uses a format similar to the For loop code. Try creating a test while loop ina C
program and viewing the generated assembly code. It will look similar to the £oxr loop code shown here.

152

Controlling Execution Flow

Optimizing Branch Instructions

Branch instructions greatly impact the performance of applications. Most modern processors (including
ones in the IA-32 family) utilize instruction prefetch caches to increase performance. As the program is
run, the instruction prefetch cache is filled with sequential instructions.

As described in Chapter 2, the out-of-order engine attempts to execute instructions as soon as possible,
even if earlier instructions in the program have not yet been executed. Branch instructions, however, cre-
ate great havoc in the out-of-order engine. The following sections describe how modern Pentium proces-
sors handle branches, and what you can do to improve the performance of your assembly language
programs.

Branch prediction

When a branch instruction is encountered, the processor out-of-order engine must determine the next
instruction to be processed. The out-of-order unit utilizes a separate unit called the branch prediction
front end to determine whether or not a branch should be followed. The branch prediction front end
employs different techniques in its attempt to predict branch activity. When creating assembly language
code that includes conditional branches, you should be aware of this processor feature.

Unconditional branches

With unconditional branches, the next instruction is not difficult to determine, but depending on how
long of a jump there was, the next instruction may not be available in the instruction prefetch cache. This
is demonstrated in Figure 6-4.

jump to far instruction

/\\\

instructions in memory —— »\

instructions not in cache

instruction prefetch cache

Figure 6-4

153

Chapter 6

When the new instruction location is determined in memory, the out-of-order engine must first deter-
mine if the instruction is available in the prefetch cache. If not, the entire prefetch cache must be cleared,
and reloaded with instructions from the new location. This can be costly to the performance of the
application.

Conditional branches

Conditional branches present an even greater challenge to the processor. For each unconditional branch,
the branch prediction unit must determine if the branch should be taken or not. Usually, when the out-
of-order engine is ready to execute the conditional branch, not enough information is available to know
for certain which direction the branch will take.

Instead, the branch prediction algorithms attempt to guess which path a particular conditional branch
will take. This is done using rules and learned history. Three main rules are implemented by the branch
prediction algorithms:

O Backward branches are assumed to be taken.
O Forward branches are assumed to be not taken.

Q Branches that have been previously taken are taken again.

Using normal programming logic, the most often seen use of backward branches (branches that jump to
previous instruction codes) is in loops. For example, the code snippet

movl $100, Secx
loopl:

addl %cx, %eax

decl %ecx

jns loopl

will jump 100 times back to the 1oop1 label, but fall through to the next instruction only once. The first
branching rule will always assume that the backwards branch will be taken. Out of the 101 times the
branch is executed, it will only be wrong once.

Forward branches are a little trickier. The branch prediction algorithm assumes that most of the time
conditional branches that go forward are not taken. In programming logic, this assumes that the code
immediately following the jump instruction is most likely to be taken, rather than the jump that moves
over the code. This situation is seen in the following code snippet:

movl -4 (%ebp), %eax
cmpl -8 (%ebp), %eax
jle L2
movl -4 (%ebp), %eax
mov1l %eax, 4(%esp)
movl $.LCO, (%esp)
call printf
jmp .L3

L2
movl -8 (%ebp), %eax
mov1l %eax, 4(%esp)
movl $.LCO, (%esp)

154

Controlling Execution Flow

call printf
L3

Does this look familiar? It is the code snippet from the analysis of the C program If statement. The code
following the JLE instruction handles the “then” part of the If statement. From a branch prediction point
of view, we can now see the reason why the JLE instruction was used instead of a JG instruction. When
the compiler created the assembly language code, it attempted to maximize the code’s performance by
guessing that the “then” part of the If statement would be more likely to be taken than the “else” part.
Because the processor branch prediction unit assumes forward jumps to not be taken, the “then” code
would already be in the instruction prefetch cache, ready to be executed.

The final rule implies that branches that are performed multiple times are likely to follow the same path
the majority of the time. The Branch Target Buffer (BTB) keeps track of each branch instruction performed
by the processor, and the outcome of the branch is stored in the buffer area.

The BTB information overrides either of the two previous rules for branches. For example, if a backward
branch is not taken the first time it is encountered, the branch prediction unit will assume it will not be
taken any subsequent times, rather than assume that the backwards branch rule would apply.

The problem with the BTB is that it can become full. As the BTB becomes full, looking up branch results
takes longer, and performance for executing the branch decreases.

Optimizing tips

While the processor tries its best to optimize how it handles branches, you can incorporate a few tricks
into your assembly language programs to help it along. The following sections describe some of the
branch optimization tricks recommended by Intel for use on the Pentium family of processors.

Eliminate branches

The most obvious way to solve branch performance problems is to eliminate the use of branches when-
ever possible. Intel has helped in this by providing some specific instructions.

In Chapter 5, “Moving Data,” the CMOV instructions were discussed. These instructions were specifically
designed to help the assembly language programmer avoid using branches to set data values. An exam-
ple of using a cMOV instruction is as follows:

movl value, %ecx
cmpl %ebx, %ecx
cmova %ecx, %$ebx

The cMOVA instruction checks the results from the cMP instruction. If the unsigned integer value in the
ECX register is above the unsigned integer value in the EBX register, the value in the ECX register is
placed in the EBX register. This functionality enabled us to create the cmovtest.s program, which deter-
mined the largest number in a series without a bunch of jump instructions.

Sometimes duplicating a few extra instructions can eliminate a jump. This small instruction overhead

will easily fit into the instruction prefetch cache, and make up for the performance hit of the jump itself.
A classic example of this is the situation in which a branch can occur within a loop:

155

Chapter 6

loop:
cmp data(, %edi, 4), %eax
je part2

call functionl

jmp looptest
part2:

call function2
looptest:

inc %edi

cmpl $10, %edi

jnz loop

The loop calls one of two functions, depending on the value read from the data array. After the function
is called, a jump is made to the end of the loop to increase the index value of the array and loop back to
the start of the loop. Each time the first function is called, the JMP instruction must be evaluated to jump
forward to the looptest label. Because this is a forward branch, it will not be predicted to be taken, and
a performance penalty will result.

To change this, you can modify the code snippet to look like the following:

loop:
cmp data(, %$edi, 4), %eax
je part2
call functionl
inc %edi
cmp $10, %edi
jnz loop
jmp end

part2:
call function2
inc %edi
cmp $10, %edi
jnz loop

end:

Instead of using the forward branch within the loop, the looptest code was duplicated within the first
function code section, eliminating one forward jump from the code.

Code predictable branches first

You can exploit the branch prediction unit rules to increase the performance of your application. As seen
in the If statement code presented, placing code that is most likely to be taken as the fall-through of the
jump forward statement increases the likelihood that it will be in the instruction prefetch cache when
needed. Allow the jump instruction to jump to the less likely used code segments.

For code using backward branches, try to use the backward branch path as the most taken path. When
implementing loops this is not usually a problem. However, in some cases you may have to alter the

program logic to accomplish this.

Figure 6-5 sums up both of these scenarios.

156

Controlling Execution Flow

loop:
more likely
// backward loop

jnz loop
less likely
fall-through — |
code I

jmp end

| —Tlesslikely

— « | forward loop

more likely — |

fall-through

code end

Figure 6-5

Unroll loops

While loops are generally covered by the backward branch rule, there is still a performance penalty even
when they are predicted correctly. A better rule-of-thumb to use is to eliminate small loops whenever
possible.

The problem appears in loop overhead. Even a simple loop requires a counter that must be checked for
each iteration, and a jump instruction that must be evaluated. Depending on the number of program
logic instructions within the loop, this can be a huge overhead.

For smaller loops, unrolling the loop can solve this problem. Unrolling the loop means to manually code
each of the instructions multiple times instead of using the loop to go back over the same instruction.
The following code is an example of a small loop that can be unrolled:

movl values, %ebx
movl $1, %edi
loop:
movl values(, %edi, 4), %eax
cmp %ebx, %eax
cmova %eax, %$ebx
inc %edi
cmp $4, %$edi
jne loop

157

Chapter 6

This was the main loop from the cmovtest.s program in Chapter 5. Instead of looping through the
instructions to look for the largest value four times, you can unroll the loop into a series of four moves:

movl values, %ebx
movl S$values, %ecx
movl (%ecx), %eax
cmp %ebx, %$eax
cmova %$eax, %ebx
movl 4 (%ecx), %eax
cmp %ebx, %$eax
cmova %$eax, %ebx
movl 8 (%ecx), %eax
cmp %ebx, %$eax
cmova %$eax, %ebx
movl 12 (%ecx), %eax
cmp %ebx, %$eax
cmova %$eax, %ebx

While the number of instructions has greatly increased, the processor will be able to feed all of them
directly into the instruction prefetch cache, and zip through them in no time.

Be careful when unrolling loops though, as it is possible to unroll too many instructions, and fill the
prefetch cache. This will force the processor to constantly fill and empty the prefetch cache.

Summary

This chapter presented instructions to help you program logic into your assembly language programs.
Just about every assembly language program needs the capability to branch to other parts of the instruc-
tion code depending on data values, or to loop through sections of code a specific number of times.

The TA-32 platform provides several instructions for coding branching and looping functions. There are
two different types of branch functions: unconditional branches and conditional branches. Unconditional
branches are performed regardless of external values or events, whereas conditional branches rely on an
external value or event to branch.

There are three types of unconditional branches: jumps, calls, and interrupts. The unconditional jump is
the most basic form of execution control. The JMP instruction forces the instruction pointer to change to
the destination location, and the processor executes the next instruction at that spot. Calls are similar to
jumps, but support the capability to return to the location after the call. The return location is stored in
the stack area, and the called function must restore the stack back to its original condition before return-
ing to the calling area. Software interrupts are used to provide access to low-level kernel functions in the
operating system. Both Microsoft Windows and Linux provide system calls via software interrupts. The
Linux system calls are available at software interrupt 0x80.

Conditional branches rely on the values of the EFLAGS register. Specifically, the carry, overflow, parity,
sign, and Zero flags are used to affect the conditional branch. Specific branch instructions monitor spe-
cific flag bits, such as the JC instruction jumps when the carry flag is set, and the Jz instruction jumps
when the Zero flag is set. The cMP instruction is helpful in comparing two values and setting EFLAGS bits
for the conditional jump instruction.

158

Controlling Execution Flow

Loops provide a method for you to easily replicate code functions without having to duplicate a lot of
code. Just as in high-level languages, loops enable you to perform tasks a specific number of times by
using a counter value that is decreased for each iteration. The LOOP instruction automatically uses the
ECX register as the counter, and decreases and tests it during each iteration.

You can duplicate high-level language conditional functions such as If-then and For statements using
common assembly language jumps and loops. To see how C functions are coded, you can use the -3
parameter of the GNU compiler to view the generated assembly language code.

When working with Pentium processors, you can use some optimization techniques to increase the per-
formance of your assembly language code. Pentium processors use the instruction prefetch cache, and
attempt to load instructions as quickly as possible into the cache. Unfortunately, branch instructions can
have a detrimental effect on the prefetch cache. As branches are detected in the cache, the out-of-order
engine attempts to predict what path the branch is most likely to take. If it is wrong, the instruction
prefetch cache is loaded with instructions that are not used, and processor time is wasted. To help solve
this problem, you should be aware of how the processor predicts branches, and attempt to code your
branches in the same manner. Also, eliminating branches whenever possible will greatly speed things
up. Finally, examining loops and converting them into a sequential series of operations enables the pro-
cessor to load all of the instructions into the prefetch cache, and not have to worry about branching for
the loop.

The next chapter discusses how the processor deals with various types of numbers. Just as in high-level
languages, there are multiple ways to represent numbers, and there are multiple ways that those num-
bers are handled in assembly language programs. Knowing all the different types of number formats can
help you when working with mathematically intensive operations.

159

Using
Numbers

Representing and working with numbers is a large part of any assembly language program.
Almost every application uses some type of numerical data to process information. Just like high-
level languages, assembly language can represent numbers in many different formats. If you are
used to programming in C or C++, you are familiar with defining specific data type variables.
Each time the variable is present, the compiler knows what type of data it represents. In assembly
language programming, this is not always the case. Values stored in memory or registers can be
interpreted as many different data types. It is your job as the assembly language programmer to
ensure that the stored data is interpreted in the proper manner using the proper instructions. The
purpose of this chapter is to describe the different number formats available, and demonstrate
how they are used in assembly language programs.

The chapter starts off by describing the integer data types, unsigned and signed. After that, a dis-
cussion on the special Binary Coded Decimal data type is presented, along with examples of using
it in programs. After that, floating-point numbers are tackled, including both the standard single
and double-precision floating-point formats, and the Intel double-extended and packed single-
and double-precision formats. Finally, some of the Intel instructions used to convert numeric data
types from one format to another are presented.

Numeric Data Types

There are numerous ways to represent numerical values in assembly language programs. Often,
you must utilize more than one data type to represent data elements within your assembly lan-
guage program. The IA-32 platform contains several different numeric data types that can be used
in assembly language programs. The core numeric data types are as follows:

Chapter 7

Unsigned integers

Signed integers

Binary-coded decimal
Packed binary-coded decimal

Single-precision floating-point

0O 000U oo

Double-precision floating-point

Q Double-extended floating-point
Besides these basic numeric data types, the SIMD extensions on Pentium processors add other advanced
numeric data types:

Q 64-bit packed integers

Q 128-bit packed integers

Q 128-bit packed single-precision floating-point

Q 128-bit packed double-precision floating-point

While the list of available numeric data types is quite large, it is relatively easy to work with numbers in
different data types within assembly language. The following sections describe each of these data types,
and show examples of how they are used in assembly language programs.

Integers

The most basic form of numbers used in assembly language programs are integers. They can represent
whole number quantities for a large range of values. This section describes the different types of integers
available for use in your assembly language programs and shows how the processor handles each of the
different types of integer values.

Standard integer sizes

Integers can be represented by a variety of sizes — that is, the number of bytes used to represent the inte-
ger quantity. The basic IA-32 platform supports four different integer sizes:

Q Byte: 8 bits

O Word: 16 bits

O Doubleword: 32 bits
Q Quadword: 64 bits

162

Using Numbers

It is important to remember that integers stored in memory using more than 1 byte are stored in little-
endian format. This means that the lowest-order byte is stored in the lowest memory location, and the
remaining bytes are stored sequentially after that. However, when the integer values are moved to
registers, the values are stored in big-endian format within the register (see Figure 7-1). Sometimes this
is confusing to work with.

Memory

B1 B2 B3 B4

B4 B3 B2 B1

Register
Figure 7-1

The conversion happens behind the scenes within the processor, so you do not necessarily have to worry
about this, but it is important when you are debugging an application and are watching data values. You
might see something like this:

(gdb) x/x &data

0x80490bc <data>: 0x00000225

(gdb) x/4b &data

0x80490bc <data>: 0x25 0x02 0x00 0x00
(gdb) print/x Seax

$1 = 0x225

(gdb)

The decimal value 549 is stored in memory location data, and moved to the EAX register. The first gdb
command uses the x command to display the value in memory located at the data label in hexadecimal
format. The hexadecimal display shows what we would expect for the hex version of 549. The next com-
mand displays the 4 bytes that make up the integer value. Notice that the binary format version shows
the 0x25 and 0x02 hex values reversed, which is what we would expect for little-endian format. The last
command uses the print command to display the same value after it is loaded into the EAX register,
again in hexadecimal format.

163

Chapter 7

Unsigned integers

The unsigned integer is pretty much the “what you see is what you get” data type. The value of the
bytes that compose the integer directly represents the integer value.

The four different sizes of unsigned integers can produce unsigned integers of different magnitudes,
based on the number of bits used. These sizes are shown in the following table.

Bits Integer Values

8 0 through 255

16 0 through 65,535

32 0 through 4,294,967,295

64 0 through 18,446,744,073,709,551,615

The 8-bit integer value is contained within a single byte (as expected). The binary value contained in the
byte is the actual integer value. Thus, a byte with a binary value of 11101010 (which can be represented
by the hexadecimal value 0XEA) has the unsigned integer value of 234.

The 16-bit unsigned integer value is contained in two consecutive bytes, which are combined to form a
single word. An example of a word value as stored in a register is shown in Figure 7-2.

Byte 1 Byte 2
00000110 10001000
0x0688 hexadecimal
1,672 decimal

Figure 7-2

The 32-bit unsigned integer values are contained in four consecutive (big-endian) bytes, which are com-
bined to form the doubleword. The doubleword is the most commonly used format for unsigned inte-
gers on the IA-32 platform. An example of a doubleword is shown in Figure 7-3.

164

Using Numbers

Byte 1 Byte 2 Byte 3 Byte 4

10000110 01101110 10110010 00010011

\\//

0Ox866EB213 hexadecimal

2,255,401,491 decimal
Figure 7-3

In Figure 7-3, each byte is represented by a hexadecimal pair (4 bits per hexadecimal value), which are
combined to form the eight-character hexadecimal value. Again, this example uses big-endian format,
as seen in the register.

The 64-bit unsigned integer values are contained in eight consecutive bytes, which together are the
quadword. An example of a quadword is shown in Figure 7-4.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

00111010|00011000|01100011{00110001|10010110|00110100|01110011{11000101

\\\\///

0x3A186331963473C5 hexadecimal

4,186,204,918,265,443,269 decimal
Figure 7-4

165

Chapter 7

Signed integers

While using unsigned integers is easy, the downside is that there is no way to represent negative num-
bers. To solve this problem, a method of representing negative numbers on the processor needed to be
adopted. There are three common methods used to depict negative numbers in computers:

Q Signed magnitude
QO One’s complement

QO Two’s complement

All three methods use the same bit sizes as unsigned integers (byte, word, doubleword, and quadword),
but represent the decimal values differently within the bits. The IA-32 platform uses the two’s comple-
ment method to represent signed integers, but it’s a good idea to understand how each of these methods
work. The following sections describe each of them.

Signed magnitude

The signed magnitude method splits the bits that make up the signed integer into two parts: a sign bit
and the magnitude bits. The most significant (leftmost) bit of the bytes is used to represent the sign of
the value. Positive numbers contain a zero in the most significant bit, whereas negative numbers have a
one there. The remaining bits in the value represent the magnitude of the number using their normal
binary values, as shown in Figure 7-5.

Signed Magnitude

10 0 1 12 0 1 1
//

Sign Bit Magnitude

hexadecimal Ox9B

decimal -27
Figure 7-5

One problem with the signed magnitude method is that there are two different ways to express a zero
value: 00000000 (decimal +0) and 10000000 (decimal -0). This can complicate some mathematical pro-
cesses. Also, arithmetic using signed magnitude numbers is complicated, as adding and subtracting sim-
ple signed integers cannot be done in the same way as unsigned numbers. For example, doing a simple
binary addition of the values 00000001 (decimal 1) and 10000001 (decimal —1) produces 10000010 (deci-
mal -2), which is not the correct answer. Different arithmetic instructions for signed integers and
unsigned numbers would be required on the processor.

166

Using Numbers

One’s complement

The one’s complement method takes the inverse of the unsigned integer value to produce the similar
negative value. The inverse changes any zero bits to ones, and any ones bits to zeroes. Thus, the one’s
complement of 00000001 would be 11111110. Again, as with signed magnitude numbers, one’s comple-
ment numbers have some problems when performing mathematical operations. There are two ways of
representing a zero value (00000000 and 11111111), and arithmetic with one’s complement numbers is
also complicated (it does not allow you to do standard binary math).

Two’s complement

The two’s compliment method solves the arithmetic problem of the signed magnitude and one’s com-
plement methods using a simple mathematical trick. For negative integer values, a one is added to the
one’s complement of the value.

For example, to find the two’s complement value for decimal -1 you would do the following:

1. Take the one’s complement of 00000001, which is 11111110.
2. Add one to the one’s complement, which is 11111111.

Doing the same for the value -2 you would get 11111110, and for -3 it would be 11111101. You may notice
a trend here. The two’s complement value counts down from 11111111 (decimal -1) until it gets to
10000000, which represents -128. Of course, for multibyte integer sizes the same principle applies across
the bytes.

While this seems like an odd thing to do, it solves all of the problems in adding and subtracting signed
integers. For example, adding the values 00000001 (+1) and 11111111 (-1) produces the value 00000000,
along with a carry value. The carry value is ignored in signed integer arithmetic, so the final value is
indeed 0. The same hardware can be used to add and subtract both unsigned and signed values.

Given the same number of bits, the two’s complement format represents the same number of values as
its unsigned integer counterpart, but must divide the values between positive and negative numbers.
Thus, the maximum value a signed integer value can have is half that of the unsigned value. The follow-
ing table shows the minimum and maximum values for each type of signed integer.

Bits Minimum and Maximum Signed Values

8 -128 to 127

16 -32,768 to 32,767

32 -2,147,483,648 to 2,147,483,647

64 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

167

Chapter 7

Using signed integers

The signed integer representation in memory and registers is often difficult to recognize unless you
know what to expect. Sometimes the GNU debugger can help out, but sometimes even it is confused.
The sample program inttest.s demonstrates this:

inttest.s - An example of using signed integers
.section .data
data:
.int -45
.section .text
.globl _start
_start:
nop
movl $-345, %ecx
movw $O0xffbl, %dx
movl data, %ebx
movl $1, %eax
int $0x80

The inttest.s program demonstrates three different ways to store signed integer values in registers.
The first two use immediate values to place negative signed integers in registers:

movl $-345, %ecx
movw $O0xffbl, %dx

The MOVW instruction is used to place a 16-bit word signed integer value OxFFB1 (-79) into the DX register.
The third method uses the data label, which contains a signed integer value, and places it in the EBX
register.

After assembling the program, you can run it in the debugger to watch what happens. Step through the
instructions until all of the data is loaded into the registers. Next, use the info command to display the
register values:

(gdb) info reg

eax 0x0 0

ecx Oxfffffea? -345
edx 0xffbl 65457

ebx Oxfff£f££d3 -45

The debugger assumes that the EBX and ECX registers contain signed integer data and displays the
answers using the data types we expected. Unfortunately, the EDX register had a problem. Because the
debugger is trying to display the entire EDX register as a signed integer data value, it is assuming that
the entire EDX register contains a single doubleword signed integer. Because it only contains a word inte-
ger, the interpreted value is wrong. Remember that the data within the register is still correct (OxFFB1),
but what the debugger thinks that number represents is wrong.

168

Using Numbers

Extending integers

The dilemma shown in the inttest.s program demonstrates how the processor handles signed inte-
gers in an environment of mixed integer sizes. Often, you will find yourself with one size of integer
value and need to move the value to a larger size (such as moving a word to a doubleword). While this
may seem like a trivial thing, sometimes it is not so trivial.

Extending unsigned integers

When converting unsigned integer values to a larger bit size (such as converting a word to a double-
word), you must ensure that all of the leading bits are set to zero. You should not simply copy one value
to the other, as shown here:

movw %ax, %bx

There is no guarantee that the upper part of the EBX register contains zeroes. To accomplish this, you
must use two instructions:

movl $0, %ebx
movw %ax, %ebx

The MOVL instruction is used to load a zero value in the EBX register. This guarantees that the EBX regis-
ter is completely zero. Then you can safely move the unsigned integer value in the AX register to the
EBX register.

To help you in these situations, Intel provides the MOVzX instruction. This instruction moves a smaller-
sized unsigned integer value (in either a register or a memory location) to a larger-sized unsigned inte-
ger value (only in a register).

The format of the MOVZX instruction is
movzx source, destination

where source can be an 8-bit or 16-bit register or memory location, and destination can be a 16-bit or
32-bit register. The movzxtest.s program demonstrates this instruction:

movzxtest.s - An example of the MOVZX instruction
.section .text
.globl _start
_start:
nop
movl $279, %ecx
movzx %$cl, %ebx
movl $1, %eax
int $0x80

The movzxtest.s program simply puts a large value in the ECX register, and then uses the MOVzX

instruction to copy the lower 8 bits to the EBX register. Because the value placed in the ECX register used
a word unsigned integer to represent it (it is larger than 255), the value in CL represents only part of the
complete value. You can watch the program in the debugger and see what is happening to the registers:

169

Chapter 7

$ gdb -g movzxtest

(gdb) break *_start+1l

Breakpoint 1 at 0x8048075: file movzxtest.s, line 5.
(gdb) run

Starting program: /home/rich/palp/chap07/movzxtest

Breakpoint 1, _start () at movzxtest.s:5
5 movl $279, %ecx

Current language: auto; currently asm
(gdb) s

6 movzx %cl, %ebx
(gdb) s

7 movl $1, %eax
(gdb) print Secx

$1 = 279

(gdb) print S$ebx

$2 = 23

(gdb) print/x $Secx
$3 = 0x117

(gdb) print/x Sebx
$4 = 0x17

(gdb)

By printing out the decimal values of the EBX and ECX registers, you can tell right away that the
unsigned integer value was not copied correctly — the original value was 279 but the new value is only
23. By displaying the values in hexadecimal, you can see what happened. The original value in hex is
0x0117, which takes a doubleword to hold. The MOVzX instruction moved just the lower byte of the

ECX register, but zeroed out the remaining bytes in the EBX register, producing the 0x17 value in the
EBX register.

Extending signed integers

Extending signed integer values is different than extending unsigned integers. Padding the high bits
with zeroes will change the value of the data for negative numbers. For example, the value -1 (11111111)
moved to a doubleword would yield the value 0000000011111111, which in signed integer notation
would be +127, not -1. For a signed extension to work, the new bits added must be set to a one value.
Thus, the new doubleword would yield the value 1111111111111111, which is the signed integer notation
for the value -1, which is what it should be.

Intel has provided the MOVSX instruction to allow extending signed integers and preserving the sign. It is
similar to the MOVSZ instruction, but it assumes that the bytes to be moved are in signed integer format
and attempts to preserve the signed integer value for the move. The movsxtest.s program is used to
demonstrate this:

movsxtest.s - An example of the MOVSX instruction
.section .text
.globl _start
_start:
nop
movw $-79, %cx
movl $0, %ebx

170

Using Numbers

movw %cx, %bx
movsx %$cx, %eax
movl S$1, %eax
movl $0, %ebx
int $0x80

The movsxtest.s program defines a negative value in the CX register (a doubleword size). It then
attempts to copy the value to the EBX register by zeroing the EBX register, and using the MOV instruction.
Next, the MOVSX instruction is used to move the Cx value to the EAX register. To see what happens, you
must run the program in the debugger, and display the register values:

(gdb) info reg

eax Oxffffffbl -79
ecx 0xffbl 65457

edx 0x0 0

ebx 0xffbl 65457

After stepping through the program until after the MOVSX instruction, you can display the register
values using the debugger info command. The ECX register contains the value 0x0000FFB1. The lower
16 bits contain the 0XFFB1 value, which is -79 in signed integer. When the CX register is moved to the
EBX register, the EBX register contains the value 0x0000FFB1, which in signed integer is 65,457, not what
we wanted.

After using the MOVSX instruction to move the CX register to the EAX register, the EAX register contains
the value OxFFFFFFB1, which in signed integer is -79. The MOVSX instruction properly added the leading
ones to the value.

Just to make sure we are on the right track, the movsxtest2.s program does the same thing, but with a
positive signed integer value:

movsxtest2.s - Another example using the MOVSX instruction
.section .text
.globl _start
_start:
nop
movw S$79, %cx
xor %ebx, %ebx
movw %cx, %bx
movsx %Ccx, %eax
movl S$1, %eax
movl $0, %ebx
int $0x80

After assembling and linking the program, run it in the debugger and look at the register values:

(gdb) info reg

eax 0x4f 79
ecx 0x4f 79
edx 0x0 0
ebx 0x4f 79

171

Chapter 7

This time when the CX register was moved to the empty EBX register, the value was in the proper format
(because the leading zeroes are OK for positive numbers). Also, the MOVSX instruction correctly filled the
EAX register with zeroes to produce the proper 32-bit signed integer value.

Defining integers in GAS

The example programs shown in the preceding section demonstrated how to use immediate data values
in assembly language programs. You can also define signed integer values using directives in the data
section.

Chapter 5, “Moving Data,” shows how to use the .int, .short, and .long directives to define signed
integer data values in the data section. These directives create doubleword signed integer values. It is
also possible to create quadword signed integer values using the . quad directive.

The . quad directive enables you to define one or more signed integer values, but assigns 8 bytes for
each value. To demonstrate this, the quadtest . s program is used:

quadtest.s - An example of quad integers
.section .data
datal:

.int 1, -1, 463345, -333252322, 0
data2:

.quad 1, -1, 463345, -333252322, 0
.section .text
.globl _start
_start:

nop

movl $1, %eax

movl $0, %ebx

int $0x80

The quadtest. s program simply defines a five doubleword signed integer array at the datal label, and
a five quadword signed integer array (using the . quad directive) at the data2 label, and then exits the
program. To see what is happening here, again assemble the program and run it in the debugger.

First, look at what the debugger thinks are the decimal values of the datal and data2 arrays:

(gdb) x/5d &datal

0x8049084 <datal>: 1 -1 463345 -333252322
0x8049094 <datal+l6>: 0

(gdb) x/5d &data2

0x8049098 <data2>: 1 0 -1 -1
0x80490a8 <data2+16>: 463345
(gdb)

The values for the datal array are as expected, but look what happened to the values in the data2
array. This is not what was used in the program. The problem is that the debugger is assuming that these
are doubleword signed integer values.

172

Using Numbers

Next, look at how the array values are stored in memory at the datal label location:

(gdb) x/20b &datal

0x8049084 <datal>: 0x01 0x00 0x00 0x00 Oxff Oxff Oxff 0xff
0x804908c <datal+8>: O0xfl 0x11 0x07 0x00 Oxle 0x£f9 0x22 Oxec
0x8049094 <datal+l6>: 0x00 0x00 0x00 0x00

(gdb)

This is as expected — each array element uses 4 bytes, and the values are placed in little-endian order.
Now, look at the array values stored at the data2 label location:

(gdb) x/40b &data2

0x8049098 <data2>: 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x80490a0 <data2+8>: O0Oxff Oxff Oxff Oxff Oxff Oxff Oxff 0xff
0x80490a8 <data2+16>: 0xfl 0x11 0x07 0x00 0x00 0x00 0x00 0x00
0x80490b0 <data2+24>: Oxle 0xf9 0x22 Oxec Oxff Oxff Oxff Oxff
0x80490b8 <data2+32>: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
(gdb)

As we told the assembler, the data values at the data2 label location were encoded using quadwords, so
each value uses 8 bytes. Indeed, the assembler placed the values in the proper places, but the debugger
didn’t know how to handle displaying the values using just the x/d command.

If you want to display quadword signed integer values in the debugger, you must use the gd option:

(gdb) x/5gd &data2

0x8049098 <data2>: 1 -1
0x80490a8 <data2+16>: 463345 -333252322
0x80490b8 <data2+32>: 0

(gdb)

There, that’s more like it.

SIMD Integers

The Intel Single Instruction Multiple Data (SIMD) technology provides additional ways to define inte-
gers (see Chapter 2, “The IA-32 Platform”). These new integer types enable the processor to perform
arithmetic operations on a group of multiple integers simultaneously.

The SIMD architecture uses the packed integer data type. A packed integer is a series of bytes that can
represent more than one integer value. Mathematical operations can be performed on the series of bytes
as a whole, working on the individual integer values within the series in parallel (this concept is
described in Chapter 17, “Using Advanced IA-32 Features”). The following sections describe the differ-
ent SIMD packed integer types available on Pentium processors.

MMX integers

The Multimedia Extension (MMX) technology introduced in the Pentium MMX and Pentium II proces-
sors provided three new integer types:

173

Chapter 7

Q 64-bit packed byte integers
Q 64-bit packed word integers
Q 64-bit packed doubleword integers

Each of these data types provides for multiple integer data elements to be contained (or packed) in a
single 64-bit MMX register. Figure 7-6 demonstrates how each data type fits in the 64-bit register.

63 0

64-bit
MMX register

8 8bit
byte integers

4 16-bit
word integers

2 32-bit
doubleword integers

Figure 7-6
As shown in Figure 7-6, 8-byte integers, four-word integers, or two doubleword integers can be packed
into a single 64-bit MMX register.
As discussed in Chapter 2, the MMX registers are mapped to the FPU registers, so be careful when using
MMx registers. Remember to save any data stored in the FPU registers in memory before using any MMx

register instructions. This is covered in the “Moving floating-point values” section later in the chapter.

The MMX platform provides additional instructions for performing parallel mathematical operations on
each of the integer values packed into the MMX register.

Moving MMX integers

You can use the MOVQ instruction to move data into an MMX register, but you must decide which of the
three packed integer formats your application will use. The format of the MOVQ instruction is

movg source, destination

where source and destination can be an MMX register, an SSE register, or a 64-bit memory location
(although you cannot move MMX integers between memory locations).

174

Using Numbers

The mmxtest . s program demonstrates loading doubleword and byte integers into MMX registers:

mmxtest.s - An example of using the MMX data types
.section .data
valuesl:
.int 1, -1
values?2:
.byte 0x10, 0x05, 0xff, 0x32, 0x47, Oxed, 0x00, 0x01
.section .text
.globl _start
_start:
nop
movg valuesl, $%mmO
movg values2, %$mml
movl $1, %eax
movl $0, %ebx
int $0x80

The mmxtest . s program defines two data arrays. The first one (valuesl) defines two doubleword
signed integers, while the second one (values2) defines 8-byte signed integer values. The MOVQ instruc-
tion is used to load the values into the first two MMX registers.

After assembling the source code, you can watch what happens in the debugger. After stepping through
the MOVQ instructions, you can display the values in the MMO and MM1 MMX registers:

(gdb) print S$mm0

$1 = {uint64 = -4294967295, v2_int32 = {1, -1}, v4_intlé6 = {1, 0, -1, -1},
v8_int8 = "\001\000\000\000y¥yy"}

(gdb) print $mml

$2 = {uint64 = 72308588487312656, v2_int32 = {855573776, 16835655},
v4_intlé = {1296, 13055, -7097, 256}, v8_int8 = "\020\005y2G&\000\001"}

(gdb) print/x S$mml

$3 = {uint64 = 0x100e44732ff0510, v2_int32 = {0x32ff0510, 0x100e447},
v4_intl6 = {0x510, O0x32ff, 0xedd7, 0x100}, v8_int8 = {0x10, Ox5, Oxff, 0x32,

0x47, O0xed, 0x0, Ox1}}
(gdb)

On the Pentium processors, the MMX registers are mapped to the existing FPU registers, so depending on
which version of gdb you are using, displaying the register information in the debugger might be a lit-
tle tricky. In older versions of gdb, instead of being able to directly display the MMX registers, you must
display their FPU register counterparts. The mmo register is mapped to the first FPU register, st 0r, and
the mm1 register is mapped to the second FPU register, st1 (this is described in detail in Chapter 9,
“Advanced Math Functions”). Unfortunately, the debugger does not know how to interpret the data in
the FPU registers, so you must display it as raw hexadecimal values and interpret it yourself.

If you are using a newer version of the GNU debugger, you can directly display the MMX registers as
shown in the preceding code. When displaying the registers, the debugger does not know what format
the data is in, so it displays all of the possibilities. The first print command displays the contents of the
MMO register as doubleword integer values. Because the example uses doubleword integer values, the
only display format that makes sense is the int32, which displays the correct information. You can pro-
duce just this format from the debugger by using the print/f command.

175

Chapter 7

Unfortunately, because the MM1 register contains byte integer values, it cannot be displayed in decimal
mode. Instead, you can use the x parameter of the print command to display the raw bytes in the regis-
ter. With this command, you can see that the individual bytes were properly placed in the MM1 register.

SSE integers

The Streaming SIMD Extensions (SSE) technology (also described in Chapter 2) provides eight 128-bit
XMM registers (named xMMO through xMM7) for handling packed data. The SSE2 technology (introduced in
the Pentium 4 processor) provides four additional packed signed integer data types:

Q 128-bit packed byte integers

Q 128-bit packed word integers

Q 128-bit packed doubleword integers
Q 128-bit packed quadword integers

These values are packed into the 128-bit xMM registers as shown in Figure 7-7.

127 0

128-bit
XMM register

16 8-bit
byte integers

8 16-bit
word integers

4 32-bit
doubleword integers

2 64-bit
quadword integers

Figure 7-7

As shown in Figure 7-7, there can be 16-byte integers, eight-word integers, four doubleword integers, or
two quadword integers packed into a single 128-bit SSE register. The SSE platform provides additional
instructions for performing parallel mathematical operations on the packed data values in the SSE regis-
ters. This enables the processor to process significantly more information using the same clock cycles.

176

Using Numbers

Moving SSE integers

The MOVDQA and MOVDQU instructions are used to move 128 bits of data into the XMM registers, or to move
data between xMM registers. The A and U parts of the mnemonic stand for aligned and unaligned, refer-
ring to how the data is stored in memory. For data that is aligned on a 16-byte boundary, the 2 option is
used; otherwise, the U option is used (Chapter 5, “Moving Data” describes aligned data).

The format of both the MOVDQA and MOVDQU instruction is
movdga source, destination

where source and destination can be either an SSE 128-bit register, or a 128-bit memory location (but
again, you cannot move data between two memory locations). The SSE instructions perform faster when
using aligned data. Also, if a program uses the MOVDQA instruction on unaligned data, a hardware excep-
tion will result.

The ssetest. s program demonstrates moving 128-bit data values into SSE registers:

ssetest.s - An example of using 128-bit SSE registers
.section .data
valuesl:
.int 1, -1, 0, 135246
values2:
.quad 1, -1
.section .text
.globl _start
_start:
nop
movdqu valuesl, %$xmmO
movdqu values2, $%$xmml

movl $1, %eax
movl $0, %ebx
int $0x80

The ssetest. s program defines two data arrays containing different types of integer data. The
valuesl array contains four doubleword signed integer values, while the values2 array contains two
quadword signed integer values. The MOVDQU instruction is used to move both data arrays into SSE
registers.

After assembling the program, you can watch the results in the debugger. The debugger is able to display
the SSE registers (xvMM0 through xMM7) using the print command:

(gdb) print S$xmmO
$1 = {v4_float = {1.40129846e-45, -nan(0x7fffff), 0, 1.89520012e-40},
v2_double = {-nan(0xfffff00000001), 2.8699144274488922e-309},
v16_int8 = "\001\000\000\000¥yyy\000\000\000\000N\020\002", v8_intl6
0, -1, -1, 0, 0, 4174, 2}, v4_int32 = {1, -1, 0, 135246}, v2_int64
-4294967295, 580877146914816},
uintl128 = 0x0002104e00000000£f£££££££00000001}
(gdb) print S$xmml
S2 = {vd4_float = {1.40129846e-45, 0, -nan(0x7fffff), -nan(0x7fffff)}

non
~ o~
=

177

Chapter 7

v2_double = {4.9406564584124654e-324, -nan(Oxfffffffffffff)},

v16_int8 = "\001\000\000\000\000\000\000\000yyyyyyyy", v8_intl6 = {1, 0, O,
0o, -1, -1, -1, -1}, v4_int32 = {1, 0, -1, -1}, v2_int6d = {1, -1},

uintl28 = Oxfffffffffff£££££0000000000000001}

(gdb)

After the MOVDQU instructions, the xMM0 and XMM1 registers contain the data values defined in the data
section. The XMMO0 register contains the four doubleword signed integer data values, and the xMM1 regis-
ter contains the two quadword signed integer data values.

Remember that the ssetest.s program will only run on Pentium III or later processors. Chapter 17,
“Using Advanced IA-32 Features,” describes the MMX and SSE instruction sets and demonstrates how

they are used.

Binary Coded Decimal

The Binary Coded Decimal (BCD) data type has been available for quite a long time in computer sys-
tems. The BCD format is often used to simplify working with devices that use decimal numbers (such as
devices that must display numbers to humans, such as clocks and timers). Instead of converting decimal
numbers to binary for mathematical operations, and then back to decimal again, the processor can keep
the numbers in BCD format and perform the mathematical operations. Understanding how BCD works
and how the processor uses it can come in handy in your assembly language programming. The follow-
ing sections describe the BCD format and how the BCD data type is handled by the IA-32 platform.

What is BCD?

BCD does pretty much what is says, it codes decimal numbers in a binary format. Each BCD value is an
unsigned 8-bit integer, with a value range of 0 to 9. The 8-bit values higher than 9 are considered invalid
in BCD. Bytes containing BCD values are combined to represent decimal digits. In a multibyte BCD
value, the lowest byte holds the decimal ones value, the next higher one holds the tens value, and so on.
This is demonstrated in Figure 7-8.

Byte 1 Byte 2 Byte 3

00000010|000000012|000001200

decimal 214
Figure 7-8

178

Using Numbers

In Figure 7-8, the decimal value 214 is represented by the BCD value 00000010 00000001 00000100. The
high-order byte holds the 100s value (2), the next order byte holds the tens value (1), and the low-order 4
bits holds the ones value (4).

As you can tell, BCD wastes space by using an entire byte for each decimal digit. Packed BCD was cre-
ated to help compensate for that. Packed BCD enables a single byte to contain two BCD values. The low-
order 4 bits of the byte contain the lower BCD value, and the high-order 4 bits of the byte contain the
higher BCD value. This is demonstrated in Figure 7-9.

Byte 1 Byte 2

00010100 1000010001

2 T B

1 4 8 9
decimal 1,489
Figure 7-9

In Figure 7-9, the decimal value 1,489 is stored in a 2-byte BCD value. The first byte contains the first two
decimal digits (1 and 4), while the second byte contains the last two decimal digits (8 and 9).

As you can see, even packed BCD is not efficient. Using 4 bytes, packed BCD can only represent num-
bers from 0 through 9,999. Using the same 4 bytes in an unsigned integer value can represent values up
to 4,292,967,295.

As you can see from these examples, the general BCD format in the IA-32 platform only supports
unsigned integer values. However, the IA-32 FPU provides a method for supporting signed BCD
integers.

FPU BCD values

The FPU registers can be used for BCD arithmetic operations within the FPU. The FPU contains eight 80-
bit registers (sST0 through ST7), which can also be used to hold 80-bit BCD values. The BCD values are
stored using the lower 9 bytes, using packed BCD format, two BCD values per byte (producing 18 BCD
digits). The last byte of the FPU register is mostly unused, with the exception of the highest-order bit.
This bit is used as a sign indicator —a 1 indicates a negative BCD value, and a 0 indicates a positive
value. This format is shown in Figure 7-10.

179

Chapter 7

80-bit Packed BCD Format
79 71 0

B18 B17 |B16 B15|B14 B13|B12 B11| B10B9 | B8 B7 B6 B5 B4 B3 B2 B1

Sign Bit 18 BCD Data Values
Figure 7-10

This description is somewhat misleading. You must use the 80-bit packed BCD format to create values in
memory for loading the BCD values into the FPU registers. Once the value is transferred to the FPU regis-
ter, it is automatically converted to a double-extended-precision floating-point format (see the “Floating-
Point Numbers” section later in this chapter). Any mathematical operations on the data within the FPU
are performed in floating-point format. When you are ready to retrieve the results from the FPU, the
floating-point value is automatically converted back to 80-bit packed BCD format.

Moving BCD values

The IA-32 instruction set includes instructions for working with 80-bit packed BCD values. The FBLD
and FBSTP instructions can be used to load and retrieve 80-bit packed BCD values in the FPU registers.

Working with the FPU registers is a little different from working with the general-purpose registers.
The eight FPU registers behave similarly to the stack area in memory. Values can be pushed and
popped into and out of the FPU register pool. STO refers to the register at the top of the stack. When a
value is pushed into the FPU register stack, it is placed in the STO0 register, and the previous value of
STO0 is loaded into ST1.

How the FPU registers work is described in more detail in Chapter 9, “Advanced Math Functions.”

The FBLD instruction is used to move a packed 80-bit BCD value into the FPU register stack. The format
is simply

fbld source
where source is an 80-bit memory location.

The bedtest. s program is designed to demonstrate the basics of loading and retrieving BCD values
from the FPU registers:

bcdtest.s - An example of using BCD integer values
.section .data
datal:
.byte 0x34, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
data?2:

180

Using Numbers

.int 2
.section .text
.globl _start
_start:

nop

fbld datal

fimul data2

fbstp datal

movl S$1, %eax
movl $0, %ebx
int $0x80

The bedtest. s program creates a simple BCD value representing the decimal value 1,234 at the mem-
ory location defined by the label datal (remember that Intel uses little-endian notation). The FBLD
instruction is used to load the value into the top of the FPU register stack (ST0). The FIMUL instruction
(discussed in Chapter 9) is used to multiply the STO register by the integer value at the data2 memory
location. Finally, the FBSTP instruction is used to move the new value on the stack back into the datal
memory location.

After assembling the program, you can run it in the debugger and watch what happens at different
points in the program. First, before any instructions execute, look at the value at the datal memory
location:

(gdb) x/10b &datal

0x8049094 <datal>: 0x34 0x12 0x00 0x00 0x00 0x00 0x00 0x00
0x804909¢c <datal+8>: 0x00 0x00

(gdb)

Good. The BCD value for 1,234 is loaded at the datal memory location. Next, step through the FBLD
instruction, and check the value in the STO0 register using the info all command:

(gdb) s

12 fimul data2
(gdb) info all

st0 1234 (raw 0x40099a40000000000000)
When you find the STO register value in the list of registers, it should show that it is loaded with the dec-
imal value 1,234. You may notice, however, that the hexadecimal value of the register is not in 80-bit
packed BCD format. Remember that the BCD value is converted to the floating-point representation
while in the FPU.
Now step through the next instruction (FIMUL) and view the registers again:

(gdb) s

13 fbstp datal
(gdb) info all

st0 2468 (raw 0x400a9a40000000000000)

181

Chapter 7

Indeed, the value in the ST0 register was multiplied by 2. The last step should place the value in STO
back into the datal memory location. You can check that by displaying the memory location:

(gdb) x/10b &datal

0x8049094 <datal>: 0x68 0x24 0x00 0x00 0x00 0x00 0x00 0x00
0x804909c <datal+8>: 0x00 0x00
(gdb)

As expected, the new value was placed in the datal memory location, back in BCD format.

Chapter 9 demonstrates how to use BCD values in arithmetic operations in more detail.

Floating-Point Numbers

Now that you know all about integers, it’s time to move on to the more complicated numerical data
type, floating-point numbers. In the past, integers were easier to work with, as the Intel processors have
always contained built-in support for performing integer mathematical operations. In earlier Intel pro-
cessors (such as the 80286 and 80386 chips) performing floating-point operations required either using
software to simulate the floating-point values using integers, or purchasing a separate FPU chip that
specialized in performing only floating-point arithmetic.

However, since the 80486 processor, the Intel IA-32 platform has directly supported floating-point opera-
tions. It is now just as easy for assembly language programmers to incorporate floating-point mathemat-
ical operations within their programs.

This section describes what the floating-point data type is, and demonstrates how it is used in assembly
language programs.

What are floating-point numbers?

So far, all the number systems discussed in this chapter have revolved around whole numbers. Whole
numbers represent numbers that are used for counting, such as one dog, two cats, and ten horses.
Eventually, the concept of negative numbers was included along with whole numbers to incorporate
the signed integer number system. Both the integer and BCD data types can only contain whole integer
values.

As you know, not all numerical relationships can be described using integers. At some point, the concept
of fractions was introduced. This meant that an infinite number of values could be contained between
two integer values. Besides the infinite number of values between integers, there is also an infinite num-
ber of integer values in the number system. All of these numbers combined are referred to as real num-
bers. Real numbers can contain any numerical value from positive infinity to negative infinity, with any
number of decimal places. An example of a real number would be 72,326.224576.

182

Using Numbers

Working with real numbers on a computer can be a challenge, especially when there are many different
magnitudes of numbers. The floating-point format was developed to produce a standard method for
representing real numbers on computer systems.

Floating-point format

The floating-point format represents real numbers using a scientific notation. If you had any type of sci-
ence class in school you are probably familiar with scientific notation. Scientific notation presents num-
bers as a coefficient (also called the mantissa) and an exponent, such as 3.6845 x 102. In the decimal world,
the exponent is based on a value of 10, and represents the number of places the decimal point has been
moved to produce the coefficient. Each time the decimal point is moved up, the exponent increases. Each
time the decimal point is moved back, the exponent decreases.

For example, the real number 25.92 would be represented in scientific notation as 2.592 x 10~1. The
value 2.592 is the coefficient, and the value 10”1 is the exponent. You must multiply the coefficient by
the exponent to obtain the original real number. As another example, the value .00172 would be repre-
sented as 1.72 x 107-3. The number 1.72 must be multiplied by 10”-3 to obtain the original value.

Binary floating-point format

Computer systems use binary floating-point numbers, which express values in binary scientific notation
format. Because the numbers are in binary format, the coefficient and exponent are based on a binary
value, not a decimal value. An example of this would be 1.0101x 2/2. Working with the fractional part
of the coefficient (the part after the decimal place) can be confusing.

To decipher the binary floating-point value, you must first understand how fractional binary numbers
work. In the decimal world, you are used to seeing values such as 0.159. What this value represents is
0 + %o + %o + %oo. The same principle applies to the binary world.

The coefficient value 1.0101 multiplied by the exponent 22 would yield the binary value 101.01, which
represents the decimal whole number 5, plus the fraction % + 1/4. This yields the decimal value 5.25.

Fractional binary numbers are the most confusing part of dealing with floating-point values. The follow-
ing table shows the first few binary fractions and their decimal equivalents.

Binary Decimal Fraction Decimal Value
0.1 % 0.5

01 % 0.25

.001 % 0.125

.0001 s .0625

.00001 Y .03125

.000001 Vs 0.015625

183

Chapter 7

To help demonstrate binary fractions, the following table shows a few examples of using binary floating-
point values:

Binary Decimal Fraction Decimal Value
10.101 2+1/2+1/8 2.625
10011.001 19+1/8 19.125
10110.1101 22+1/2+1/4+1/16 22.8125
1101.011 13+1/4+1/8 13.375

The examples in the table have a finite fractional part. However, just as decimal fractions can have a
repeating value (such as the decimal value of 1/3), binary fractions can also have a repeating fraction
value. These values must be truncated at some point and can only estimate the decimal fraction in
binary.

Fortunately, the GNU assembler does this work for us, so don’t get too worried if you are not completely
comfortable with binary fractions and binary floating-point format.

When writing binary floating-point values, the binary values are usually normalized. This process
moves the decimal point to the leftmost digit and modifies the exponent to compensate. For example,
the value 1101.011 becomes 1.101011 x 2/3.

Trying to properly represent binary floating-point numbers in a computer system was a challenge in the
early days of computing. Fortunately, standards were developed to help programmers deal with float-
ing-point numbers. A set of standard floating-point data types was created to simplify handling real
numbers in computer programs. The next section describes the standard floating-point data types.

Standard floating-point data types

While there are an infinite number of possible real number values, processors have a finite number of
bits available to handle the values. Because of this, a standard system was created for approximating real
numbers in a computer environment. While the approximations are not perfect, they provide a system
for working with a realistic subset of the real number system.

In 1985, the Institute of Electrical and Electronics Engineers (IEEE) created what is called the IEEE
Standard 754 floating-point formats. These formats are used universally to represent real numbers in
computer systems. Intel has adopted this standard in the IA-32 platform for representing floating-point
values.

184

Using Numbers

The IEEE Standard 754 floating-point standard defines real numbers as binary floating-point values
using three components:

Q Asign
Q Asignificand

0O Anexponent

The sign bit denotes if the value is negative or positive. A one in the sign bit denotes a negative value,
and a zero denotes a positive value.

The significand part represents the coefficient (or mantissa) of the floating-point number. The coefficient
can be either normalized or denormalized. When a binary value is normalized, it is written with a one
before the decimal point. The exponent is modified to accommodate how many bit positions have been
shifted to accomplish this (similar to the scientific notation method). This means that in a normalized
value, the significand is always comprised of a one and a binary fraction.

The exponent represents the exponent part of the floating-point number. Because the exponent value can
be positive or negative, it is offset by a bias value. This ensures that the exponent field can only be a pos-
itive unsigned integer. It also limits the minimum and maximum exponent values available for use in
the format. The general format of the binary floating-point number is shown in Figure 7-11.

Binary Floating Point Format

Sign Bit Exponent Coefficient
Figure 7-11

These three parts of the floating-point number are contained within a fixed-size data format. The IEEE
Standard 754 defines two sizes of floating-point numbers:

Q 32-bits (called single-precision)
Q 64-bits (called double-precision)

185

Chapter 7

The number of bits available for representing the significand determines the precision. Figure 7-12
shows the bit layouts for the two different precision types.

IEEE Standard 754 Floating Point Formats

31 30 23 22 0

Exponent Significand

Single Precision

Sign

63 62 52 51 0
Exponent Significand

Sign Double Precision

Figure 7-12

The single-precision floating-point number uses a 23-bit significand value. However, the floating-point
format assumes that the integer value of the significand will always be a one and does not use it in the
significand value. This effectively makes 24 bits of precision for the significand. The exponent uses an 8-
bit value, with a bias value of 127. This means that the exponent can have a value between -128 and +127
(binary exponent). This combination produces a decimal range for single-precision floating-point num-
bers of 1.18 x 10"-38 to 3.40 x 10°38.

The double-precision floating-point number uses a 52-bit fraction value, which provides 53 bits of preci-
sion for the significand. The exponent uses an 11-bit value, with a bias value of 1023. This means that the
exponent can have a value between -1022 and +1023 (binary exponent). This combination produces a
decimal range for double-precision floating-point numbers of 2.23 x 107-308 to 1.79 x 10°308.

IA-32 floating-point values

The IA-32 platform uses both the IEEE Standard 754 single- and double-precision floating-point formats,
along with its own 80-bit format called the double-extended-precision floating-point format. The three
formats provide for different levels of precision when performing floating-point math. The double-
extended-precision floating-point format is used within the FpU 80-bit registers during floating-point
mathematical processes.

The Intel 80-bit double-extended-precision floating-point format uses 64 bits for the signficand and
15 bits for the exponent. The bias value used for the double-extended-precision floating-point format
is 16,383, producing an exponent range of 16382 to +16383, for a decimal range of 3.37 x 10"-4932 to
1.18 x 107°4932.

186

Using Numbers

The following table sums up the three types of floating-point formats used on the standard IA-32
platform.

Data Type Length Significand Bits Exponent Bits Range

Single precision 32 24 8 1.18 x 107-38 to
3.40 x 10138

Double precision 64 53 1 2.23 x 10"-308 to
1.79 x 107308

Double extended 80 64 15 3.37 x 101-4932 to

1.18 x 1074932

Defining floating-point values in GAS

The GNU assembler provides directives for defining single-and double-precision floating-point values
(see Chapter 5, “Moving Data”). At the time of this writing, gas does not have a directive for defining
double-extended-precision floating-point values.

Floating-point values are stored in memory using the little-endian format. Arrays are stored in the order
in which the values are defined in the directive. The . float directive is used to create 32-bit single-
precision values, while the . double directive is used to create 64-bit double-precision values.

Moving floating-point values

The FLD instruction is used to move floating-point values into and out of the FPU registers. The format of
the FLD instruction is

f1d source
where source can be a 32-, 64-, or 80-bit memory location.

The floattest.s program demonstrates how floating-point data values are defined and used in
assembly language programs:

floattest.s - An example of using floating point numbers
.section .data

valuel:

.float 12.34
value2:

.double 2353.631
.section .bss

.lcomm data, 8
.section .text
.globl _start
_start:

nop

flds valuel

187

Chapter 7

f1dl value2
fstl data

movl $1, %eax
movl $0, %ebx
int $0x80

The valuel label points to a single-precision floating-point value stored in 4 bytes of memory. The
value2 label points to a double-precision floating-point value stored in 8 bytes of memory. The data
label points to an empty buffer in memory that will be used to transfer a double-precision floating-point
value.

The IA-32 FLD instruction is used for loading single- and double-precision floating-point numbers stored
in memory onto the FPU register stack. To differentiate between the data sizes, the GNU assembler uses
the FLDS instruction for loading single-precision floating-point numbers, and the FLDL instruction for
loading double-precision floating-point numbers.

Similarly, the FST instruction is used for retrieving the top value on the FPU register stack and placing
the value in a memory location. Again, for single-precision numbers, the instruction is FSTS, and for
double-precision numbers, FSTL.

After assembling the floattest.s program, watch the memory locations and register values as the
instructions execute. First, look at how the floating-point values are stored in the memory locations:

(gdb) x/4b &valuel

0x8049094 <valuel>: 0xad 0x70 0x45 0x41

(gdb) x/8b &value2

0x8049098 <value2>: 0x8d 0x97 Ox6e 0x12 0x43 0x63 O0xa2 0x40
(gdb)

If you want to view the decimal values, you can use the £ option of the x command:

(gdb) x/f &valuel

0x8049094 <valuel>: 12.3400002

(gdb) x/gf &value2

0x8049098 <value2>: 2353.6309999999999
(gdb)

Notice that when the debugger attempts to calculate the values for display, rounding errors are already
present. The £ option only displays single-precision numbers. To display the double-precision value, you
need to use the gf option, which displays quadword values.

After stepping through the first FLDS instruction, look at the value of the ST0 register using either the
info reg or print command:

(gdb) print $st0

$1 = 12.340000152587890625
(gdb)

188

Using Numbers

The value in the valuel memory location was correctly placed in the ST0 register. Now step through the
next instruction, and look at the value in the STO0 register:

(gdb) print $st0
$2 = 2353.6309999999998581188265234231949
(gdb)

The value has been replaced with the newly loaded double-precision value (and the debugger correctly
displayed the value as a double-precision floating-point number). To see what happened with the origi-
nally loaded value, look at the ST1 register:

(gdb) print S$stl
$3 = 12.340000152587890625
(gdb)

As expected, the value in ST0 was shifted down to the ST1 register when the new value was loaded.
Now look at the value of the data label, then step through the FSTL instruction, and look again:

(gdb) x/gf &data

0x80490a0 <data>: 0

(gdb) s

18 movl S$1, %eax

(gdb) x/gf &data

0x80490a0 <data>: 2353.6309999999999
(gdb)

The FSTL instruction loaded the value in the STO register to the memory location pointed to by the
data label.

Using preset floating-point values

The IA-32 instruction set includes some preset floating-point values that can be loaded into the FPU reg-
ister stack. These are shown in the following table.

Instruction Description

FLD1 Push +1.0 into the FPU stack

FLDL2T Push log(base 2) 10 onto the FPU stack
FLDL2E Push log(base 2) e onto the FPU stack
FLDPI Push the value of pi onto the FPU stack
FLDLG2 Push log(base 10) 2 onto the FPU stack
FLDLN2 Push log(base e) 2 onto the FPU stack
FLDZ Push +0.0 onto the FPU stack

189

Chapter 7

These instructions provide an easy way to push common mathematical values onto the FPU stack
for operations with your data. You may notice something odd about the FLDZ instruction. In the
floating-point data types, there is a difference between +0.0 and —0.0. For most operations they are
considered the same value, but they produce different values when used in division (positive infinity
and negative infinity).

The fpuvals. s program demonstrates how the preset floating-point values can be used:

fpuvals.s - An example of pushing floating point constants

.section

.text

.globl _start

_st

art:
nop
fldl

fldl2t
fldl2e

fldpi

fldlg2
f1dln2

fldz

movl
movl

$1, %eax
$0, %ebx

int $0x80

The fpuvals. s program simply pushes the various floating-point constants onto the FPU register stack.
You can assemble the program and run it in the debugger to watch the FPU register stack as the instruc-
tions are executed. At the end of the list, the registers should look like this:

(gdb) info all

st0 0 (raw 0x00000000000000000000)
stl 0.6931471805599453094286904741849753

st2 0.30102999566398119522564642835948945
st3 3.1415926535897932385128089594061862

std 1.4426950408889634073876517827983434

st5 3.3219280948873623478083405569094566

st6 1 (raw 0x3f£f£8000000000000000)
st7 0 (raw 0x00000000000000000000)
(gdb)

0x3ffebl7217£7d1cf79ac)
0x3££fd9a209a84fbcff799)
0x4000c90fdaa22168c235)
0x3fffb8aa3b295c17£0bc)
0x4000d49a784bcdlb8afe)

The values are in the reverse order from how they were placed into the stack.

SSE floating-point data types

Besides the three standard floating-point data types, Intel processors that implement the SSE technology
include two advanced floating-point data types. The SSE technology incorporates eight 128-bit XMM
registers (see Chapter 2 for more details) that can be used to hold pac