
Dwarf3.pdf


 
 
 


 


DWARF Debugging Information Format 
 


Version 3 


 


DWARF Debugging Information Format Workgroup 


http://dwarf.freestandards.org 


 


 


Free Standards Group 


http://freestandards.org 


 


 


December 20, 2005 



http://dwarf.freestandards.org/





 
 
 


 


DWARF Debugging Information Format, Version 3 


Copyright © 2005 Free Standards Group 


Permission is granted to copy, distribute and/or modify this document under the terms of the 
GNU Free Documentation License, Version 1.2; with no Invariant Sections, with no Front-Cover 
Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled 
"GNU Free Documentation License". 


This document is based on the DWARF Debugging Information Format, Version 2, which 
contained the following notice: 


UNIX International 
Programming Languages SIG 
Revision: 2.0.0 (July 27, 1993)  


Copyright © 1992, 1993 UNIX International, Inc. 


Permission to use, copy, modify, and distribute this documentation for any purpose and 
without fee is hereby granted, provided that the above copyright notice appears in all 
copies and that both that copyright notice and this permission notice appear in supporting 
documentation, and that the name UNIX International not be used in advertising or 
publicity pertaining to distribution of the software without specific, written prior 
permission. UNIX International makes no representations about the suitability of this 
documentation for any purpose. It is provided "as is" without express or implied 
warranty.  


 


Trademarks:  


Intel386 is a trademark of Intel Corporation. 
Java is a trademark of Sun Microsystems, Inc. 
All other trademarks found herein are property of their respective owners. 
 







 
 
 


 
 
December 20, 2005  Page iii 


Table of Contents 
DWARF DEBUGGING INFORMATION FORMAT  VERSION 3 ...................................................................... I 


1 INTRODUCTION..............................................................................................................................................1 
1.1 PURPOSE AND SCOPE...................................................................................................................................1 
1.2 OVERVIEW ..................................................................................................................................................1 
1.3 VENDOR EXTENSIBILITY .............................................................................................................................2 
1.4 CHANGES FROM VERSION 1 TO VERSION 2..................................................................................................2 
1.5 CHANGES FROM VERSION 2 TO VERSION 3..................................................................................................3 


1.5.1 Upward Compatibility ...........................................................................................................................4 
2 GENERAL DESCRIPTION .............................................................................................................................5 


2.1 THE DEBUGGING INFORMATION ENTRY......................................................................................................5 
2.2 ATTRIBUTE TYPES.......................................................................................................................................5 
2.3 RELATIONSHIP OF DEBUGGING INFORMATION ENTRIES ............................................................................13 
2.4 TARGET ADDRESSES .................................................................................................................................13 
2.5 DWARF EXPRESSIONS .............................................................................................................................14 


2.5.1 General Operations .............................................................................................................................14 
2.5.2 Example Stack Operations...................................................................................................................22 


2.6 LOCATION DESCRIPTIONS .........................................................................................................................22 
2.6.1 Register Name Operators ....................................................................................................................23 
2.6.2 Simple Location Expressions ...............................................................................................................23 
2.6.3 Composition Operators........................................................................................................................24 
2.6.4 Location Expressions...........................................................................................................................25 
2.6.5 Example Location Expressions ............................................................................................................25 
2.6.6 Location Lists.......................................................................................................................................26 


2.7 TYPES OF DECLARATIONS .........................................................................................................................27 
2.8 ACCESSIBILITY OF DECLARATIONS ...........................................................................................................28 
2.9 VISIBILITY OF DECLARATIONS ..................................................................................................................28 
2.10 VIRTUALITY OF DECLARATIONS................................................................................................................29 
2.11 ARTIFICIAL ENTRIES .................................................................................................................................29 
2.12 SEGMENTED ADDRESSES...........................................................................................................................29 
2.13 NON-DEFINING DECLARATIONS AND COMPLETIONS.................................................................................30 


2.13.1 Non-Defining Declarations.............................................................................................................31 
2.13.2 Declarations Completing Non-Defining Declarations....................................................................31 


2.14 DECLARATION COORDINATES ...................................................................................................................31 
2.15 IDENTIFIER NAMES....................................................................................................................................32 
2.16 DATA LOCATIONS .....................................................................................................................................32 
2.17 CODE ADDRESSES AND RANGES ...............................................................................................................32 


2.17.1 Single Address.................................................................................................................................32 
2.17.2 Contiguous Address Range .............................................................................................................33 
2.17.3 Non-Contiguous Address Ranges....................................................................................................33 


2.18 ENTRY ADDRESS .......................................................................................................................................34 
2.19 STATIC AND DYNAMIC PROPERTIES OF TYPES ..........................................................................................35 
2.20 ENTITY DESCRIPTIONS ..............................................................................................................................35 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page iv  December 20, 2005 


3 PROGRAM SCOPE ENTRIES......................................................................................................................37 
3.1 COMPILATION AND IMPORTING ENTRIES...................................................................................................37 


3.1.1 Normal and Partial Compilation Unit Entries.....................................................................................37 
3.1.2 Imported Unit Entries ..........................................................................................................................41 


3.2 MODULE, NAMESPACE AND IMPORTING ENTRIES .....................................................................................41 
3.2.1 Module Entries.....................................................................................................................................41 
3.2.2 Namespace Entries ..............................................................................................................................42 
3.2.3 Imported (or Renamed) Declaration Entries .......................................................................................43 
3.2.4 Imported Module Entries .....................................................................................................................44 


3.3 SUBROUTINE AND ENTRY POINT ENTRIES.................................................................................................45 
3.3.1 General Subroutine and Entry Point Information ...............................................................................45 
3.3.2 Subroutine and Entry Point Return Types ...........................................................................................47 
3.3.3 Subroutine and Entry Point Locations.................................................................................................47 
3.3.4 Declarations Owned by Subroutines and Entry Points........................................................................48 
3.3.5 Low-Level Information ........................................................................................................................48 
3.3.6 Types Thrown by Exceptions ...............................................................................................................49 
3.3.7 Function Template Instantiations ........................................................................................................50 
3.3.8 Inline Subroutines................................................................................................................................50 
3.3.9 Trampolines .........................................................................................................................................56 


3.4 LEXICAL BLOCK ENTRIES .........................................................................................................................57 
3.5 LABEL ENTRIES.........................................................................................................................................57 
3.6 WITH STATEMENT ENTRIES ......................................................................................................................58 
3.7 TRY AND CATCH BLOCK ENTRIES.............................................................................................................58 


4 DATA OBJECT AND OBJECT LIST ENTRIES ........................................................................................59 
4.1 DATA OBJECT ENTRIES .............................................................................................................................59 
4.2 COMMON BLOCK ENTRIES ........................................................................................................................62 
4.3 NAMELIST ENTRIES ...................................................................................................................................62 


5 TYPE ENTRIES ..............................................................................................................................................63 
5.1 BASE TYPE ENTRIES..................................................................................................................................63 
5.2 UNSPECIFIED TYPE ENTRIES .....................................................................................................................67 
5.3 TYPE MODIFIER ENTRIES ..........................................................................................................................67 
5.4 TYPEDEF ENTRIES .....................................................................................................................................69 
5.5 ARRAY TYPE ENTRIES...............................................................................................................................69 
5.6 STRUCTURE, UNION, CLASS AND INTERFACE TYPE ENTRIES ....................................................................70 


5.6.1 Structure, Union and Class Type Entries.............................................................................................71 
5.6.2 Interface Type Entries..........................................................................................................................72 
5.6.3 Derived or Extended Classes and Interfaces .......................................................................................73 
5.6.4 Access Declarations.............................................................................................................................73 
5.6.5 Friends.................................................................................................................................................74 
5.6.6 Data Member Entries...........................................................................................................................74 
5.6.7 Member Function Entries ....................................................................................................................77 
5.6.8 Class Template Instantiations..............................................................................................................78 
5.6.9 Variant Entries.....................................................................................................................................79 


5.7 CONDITION ENTRIES .................................................................................................................................80 
5.8 ENUMERATION TYPE ENTRIES...................................................................................................................80 
5.9 SUBROUTINE TYPE ENTRIES......................................................................................................................81 







 
 
 


 
 
December 20, 2005  Page v 


5.10 STRING TYPE ENTRIES ..............................................................................................................................82 
5.11 SET ENTRIES .............................................................................................................................................83 
5.12 SUBRANGE TYPE ENTRIES.........................................................................................................................83 
5.13 POINTER TO MEMBER TYPE ENTRIES ........................................................................................................84 
5.14 FILE TYPE ENTRIES ...................................................................................................................................86 
5.15 DYNAMIC TYPE PROPERTIES .....................................................................................................................86 


5.15.1 Data Location .................................................................................................................................86 
5.15.2 Allocation and Association Status...................................................................................................86 


5.16 DWARF PROCEDURES .............................................................................................................................87 
6 OTHER DEBUGGING INFORMATION.....................................................................................................89 


6.1 ACCELERATED ACCESS .............................................................................................................................89 
6.1.1 Lookup by Name ..................................................................................................................................90 
6.1.2 Lookup by Address...............................................................................................................................91 


6.2 LINE NUMBER INFORMATION ....................................................................................................................92 
6.2.1 Definitions ...........................................................................................................................................93 
6.2.2 State Machine Registers.......................................................................................................................93 
6.2.3 Line Number Program Instructions .....................................................................................................95 
6.2.4 The Line Number Program Header .....................................................................................................95 
6.2.5 The Line Number Program ..................................................................................................................98 


6.3 MACRO INFORMATION ............................................................................................................................104 
6.3.1 Macinfo Types....................................................................................................................................104 
6.3.2 Base Source Entries ...........................................................................................................................106 
6.3.3 Macinfo Entries for Command Line Options.....................................................................................106 
6.3.4 General Rules and Restrictions .........................................................................................................106 


6.4 CALL FRAME INFORMATION....................................................................................................................107 
6.4.1 Structure of Call Frame Information.................................................................................................108 
6.4.2 Call Frame Instructions.....................................................................................................................112 
6.4.3 Call Frame Instruction Usage ...........................................................................................................117 
6.4.4 Call Frame Calling Address ..............................................................................................................118 


7 DATA REPRESENTATION ........................................................................................................................119 
7.1 VENDOR EXTENSIBILITY .........................................................................................................................119 
7.2 RESERVED VALUES .................................................................................................................................120 


7.2.1 Error Values ......................................................................................................................................120 
7.2.2 Initial Length Values..........................................................................................................................120 


7.3 EXECUTABLE OBJECTS AND SHARED OBJECTS .......................................................................................120 
7.4 32-BIT AND 64-BIT DWARF FORMATS ..................................................................................................120 
7.5 FORMAT OF DEBUGGING INFORMATION..................................................................................................123 


7.5.1 Compilation Unit Header ..................................................................................................................123 
7.5.2 Debugging Information Entry............................................................................................................124 
7.5.3 Abbreviations Tables .........................................................................................................................124 
7.5.4 Attribute Encodings ...........................................................................................................................125 


7.6 VARIABLE LENGTH DATA .......................................................................................................................139 
7.7 DWARF EXPRESSIONS AND LOCATION DESCRIPTIONS ..........................................................................141 


7.7.1 DWARF Expressions..........................................................................................................................141 
7.7.2 Location Expressions.........................................................................................................................145 
7.7.3 Location Lists.....................................................................................................................................145 


7.8 BASE TYPE ENCODINGS ..........................................................................................................................146 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page vi  December 20, 2005 


7.9 ACCESSIBILITY CODES ............................................................................................................................148 
7.10 VISIBILITY CODES ...................................................................................................................................149 
7.11 VIRTUALITY CODES ................................................................................................................................149 
7.12 SOURCE LANGUAGES ..............................................................................................................................149 
7.13 ADDRESS CLASS ENCODINGS ..................................................................................................................151 
7.14 IDENTIFIER CASE.....................................................................................................................................151 
7.15 CALLING CONVENTION ENCODINGS........................................................................................................152 
7.16 INLINE CODES .........................................................................................................................................152 
7.17 ARRAY ORDERING ..................................................................................................................................153 
7.18 DISCRIMINANT LISTS ..............................................................................................................................153 
7.19 NAME LOOKUP TABLES...........................................................................................................................153 
7.20 ADDRESS RANGE TABLE .........................................................................................................................154 
7.21 LINE NUMBER INFORMATION ..................................................................................................................155 
7.22 MACRO INFORMATION ............................................................................................................................157 
7.23 CALL FRAME INFORMATION....................................................................................................................157 
7.24 NON-CONTIGUOUS ADDRESS RANGES.....................................................................................................159 
7.25 DEPENDENCIES AND CONSTRAINTS.........................................................................................................160 
7.26 INTEGER REPRESENTATION NAMES.........................................................................................................161 


APPENDIX A -- ATTRIBUTES BY TAG VALUE (INFORMATIVE).............................................................163 


APPENDIX B -- DEBUG SECTION RELATIONSHIPS (INFORMATIVE)...................................................181 


APPENDIX C -- VARIABLE LENGTH DATA: ENCODING/DECODING (INFORMATIVE) ...................185 


APPENDIX D -- EXAMPLES (INFORMATIVE) ...............................................................................................187 
D.1 COMPILATION UNITS AND ABBREVIATIONS TABLE EXAMPLE ................................................................187 
D.2 AGGREGATE EXAMPLES..........................................................................................................................189 
D.2.1 FORTRAN 90 EXAMPLE ...........................................................................................................................189 
D.2.2 ADA EXAMPLE ........................................................................................................................................195 
D.3 NAMESPACE EXAMPLES ..........................................................................................................................198 
D.4 MEMBER FUNCTION EXAMPLE................................................................................................................201 
D.5 LINE NUMBER PROGRAM EXAMPLE ........................................................................................................203 
D.6 CALL FRAME INFORMATION EXAMPLE ...................................................................................................205 
D.7 INLINING EXAMPLES ...............................................................................................................................209 
D.7.1 ALTERNATIVE #1: INLINE BOTH OUTER AND INNER............................................................................210 
D.7.2 ALTERNATIVE #2: INLINE OUTER, MULTIPLE INNERS .........................................................................213 
D.7.3 ALTERNATIVE #3: INLINE OUTER, ONE NORMAL INNER......................................................................216 


APPENDIX E -- DWARF COMPRESSION AND DUPLICATE ELIMINATION (INFORMATIVE) .........219 
E.1 OVERVIEW ..............................................................................................................................................219 
E.2 NAMING AND USAGE CONSIDERATIONS..................................................................................................221 
E.2.1 SECTION GROUP NAMES .........................................................................................................................222 
E.2.2 DEBUGGING INFORMATION ENTRY NAMES.............................................................................................222 
E.2.3 USE OF DW_TAG_COMPILE_UNIT VERSUS DW_TAG_PARTIAL_UNIT ..................................................223 
E.2.4 USE OF DW_TAG_IMPORTED_UNIT .......................................................................................................224 
E.2.5 USE OF DW_FORM_REF_ADDR .............................................................................................................224 
E.3 EXAMPLES...............................................................................................................................................225 







 
 
 


 
 
December 20, 2005  Page vii 


E.3.1 C++ EXAMPLE ........................................................................................................................................225 
E.3.2 FORTRAN EXAMPLE ................................................................................................................................228 
E.3.3 C EXAMPLE.............................................................................................................................................231 
E.4 SUMMARY OF COMPRESSION TECHNIQUES .............................................................................................232 
E.4.1 #INCLUDE COMPRESSION .........................................................................................................................232 
E.4.2 ELIMINATING FUNCTION DUPLICATION ...................................................................................................232 
E.4.3 SINGLE-FUNCTION-PER-DWARF-COMPILATION-UNIT ............................................................................232 
E.4.4 INLINING AND OUT-OF-LINE-INSTANCES..................................................................................................233 


APPENDIX F – VERSION NUMBERS (INFORMATIVE) ...............................................................................235 
 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page viii  December 20, 2005 


 







 
 
 


 
 
December 20, 2005  Page ix 


List of Figures 
FIGURE 1. TAG NAMES ...................................................................................................................................................6 
FIGURE 2. ATTRIBUTE NAMES ......................................................................................................................................11 
FIGURE 3. CLASSES OF ATTRIBUTE VALUE ..................................................................................................................12 
FIGURE 4. ACCESSIBILITY CODES .................................................................................................................................28 
FIGURE 5. VISIBILITY CODES ........................................................................................................................................28 
FIGURE 6. VIRTUALITY CODES .....................................................................................................................................29 
FIGURE 7. EXAMPLE ADDRESS CLASS CODES................................................................................................................30 
FIGURE 10. CALLING CONVENTION CODES ...................................................................................................................46 
FIGURE 11. INLINE CODES ............................................................................................................................................51 
FIGURE 12. ENDIANITY ATTRIBUTE VALUES.................................................................................................................62 
FIGURE 13. ENCODING ATTRIBUTE VALUES..................................................................................................................64 
FIGURE 14. DECIMAL SIGN ATTRIBUTE VALUES ...........................................................................................................66 
FIGURE 15. TYPE MODIFIER TAGS.................................................................................................................................68 
FIGURE 16. ARRAY ORDERING .....................................................................................................................................69 
FIGURE 17. DISCRIMINANT DESCRIPTOR VALUES .........................................................................................................79 
FIGURE 18. TAG ENCODINGS ......................................................................................................................................133 
FIGURE 19. CHILD DETERMINATION ENCODINGS........................................................................................................133 
FIGURE 20. ATTRIBUTE ENCODINGS ...........................................................................................................................138 
FIGURE 21. ATTRIBUTE FORM ENCODINGS .................................................................................................................139 
FIGURE 22. EXAMPLES OF UNSIGNED LEB128 ENCODINGS........................................................................................140 
FIGURE 23. EXAMPLES OF SIGNED LEB128 ENCODINGS ............................................................................................141 
FIGURE 24. DWARF OPERATION ENCODINGS............................................................................................................145 
FIGURE 25. BASE TYPE ENCODING VALUES ................................................................................................................147 
FIGURE 26. DECIMAL SIGN ENCODINGS ......................................................................................................................147 
FIGURE 27. ENDIANITY ENCODINGS ...........................................................................................................................148 
FIGURE 28. ACCESSIBILITY ENCODINGS .....................................................................................................................148 
FIGURE 29. VISIBILITY ENCODINGS ............................................................................................................................149 
FIGURE 30. VIRTUALITY ENCODINGS .........................................................................................................................149 
FIGURE 31. LANGUAGE ENCODINGS ...........................................................................................................................151 
FIGURE 32. IDENTIFIER CASE ENCODINGS...................................................................................................................151 
FIGURE 33. CALLING CONVENTION ENCODINGS .........................................................................................................152 
FIGURE 34. INLINE ENCODINGS ..................................................................................................................................152 
FIGURE 35. ORDERING ENCODINGS ............................................................................................................................153 
FIGURE 36. DISCRIMINANT DESCRIPTOR ENCODINGS .................................................................................................153 
FIGURE 37. LINE NUMBER STANDARD OPCODE ENCODINGS .....................................................................................156 
FIGURE 38. LINE NUMBER EXTENDED OPCODE ENCODINGS......................................................................................156 
FIGURE 39. MACINFO TYPE ENCODINGS ....................................................................................................................157 
FIGURE 40. CALL FRAME INSTRUCTION ENCODINGS...................................................................................................159 
FIGURE 41. INTEGER REPRESENTATION NAMES .........................................................................................................161 
FIGURE 42. ATTRIBUTES BY TAG VALUE ..................................................................................................................179 
FIGURE 43. DEBUG SECTION RELATIONSHIPS .............................................................................................................182 
FIGURE 44. ALGORITHM TO ENCODE AN UNSIGNED INTEGER .....................................................................................185 
FIGURE 45. ALGORITHM TO ENCODE A SIGNED INTEGER ............................................................................................185 
FIGURE 46. ALGORITHM TO DECODE AN UNSIGNED LEB128 NUMBER.......................................................................186 
FIGURE 47. ALGORITHM TO DECODE A SIGNED LEB128 NUMBER..............................................................................186 
FIGURE 48. COMPILATION UNITS AND ABBREVIATIONS TABLE...................................................................................188 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page x  December 20, 2005 


FIGURE 49. FORTRAN 90 EXAMPLE: SOURCE FRAGMENT ...........................................................................................189 
FIGURE 50. FORTRAN 90 EXAMPLE: DESCRIPTOR REPRESENTATION ..........................................................................190 
FIGURE 51. FORTRAN 90 EXAMPLE: DWARF DESCRIPTION ......................................................................................193 
FIGURE 52. ADA EXAMPLE: SOURCE FRAGMENT ........................................................................................................195 
FIGURE 53. ADA EXAMPLE: DWARF DESCRIPTION ...................................................................................................197 
FIGURE 54. NAMESPACE EXAMPLE: SOURCE FRAGMENT............................................................................................198 
FIGURE 55. NAMESPACE EXAMPLE: DWARF DESCRIPTION.......................................................................................200 
FIGURE 56. MEMBER FUNCTION EXAMPLE: SOURCE FRAGMENT ................................................................................201 
FIGURE 57. MEMBER FUNCTION EXAMPLE: DWARF DESCRIPTION ...........................................................................202 
FIGURE 58. LINE NUMBER PROGRAM EXAMPLE: MACHINE CODE................................................................................203 
FIGURE 59. LINE NUMBER PROGRAM EXAMPLE: ONE ENCODING ................................................................................204 
FIGURE 60. LINE NUMBER PROGRAM EXAMPLE: ALTERNATE ENCODING....................................................................204 
FIGURE 61. CALL FRAME INFORMATION EXAMPLE: MACHINE CODE FRAGMENTS.......................................................206 
FIGURE 62. CALL FRAME INFORMATION EXAMPLE: CONCEPTUAL MATRIX.................................................................206 
FIGURE 63. CALL FRAME INFORMATION EXAMPLE: COMMON INFORMATION ENTRY ENCODING ................................207 
FIGURE 64. CALL FRAME INFORMATION EXAMPLE: FRAME DESCRIPTION ENTRY ENCODING......................................208 
FIGURE 65. INLINING EXAMPLES: PSEUDO-SOURCE FRAGMENT..................................................................................209 
FIGURE 66. INLINING EXAMPLE #1: ABSTRACT INSTANCE ..........................................................................................211 
FIGURE 67. INLINING EXAMPLE #1: CONCRETE INSTANCE..........................................................................................212 
FIGURE 68. INLINING EXAMPLE #2: ABSTRACT INSTANCE ..........................................................................................214 
FIGURE 69. INLINING EXAMPLE #2: CONCRETE INSTANCE..........................................................................................215 
FIGURE 70. INLINING EXAMPLE #3: ABSTRACT INSTANCE ..........................................................................................217 
FIGURE 71. INLINING EXAMPLE #3: CONCRETE INSTANCE..........................................................................................218 
FIGURE 72.  DUPLICATE ELIMINATION EXAMPLE #1: C++ SOURCE ............................................................................225 
FIGURE 73. DUPLICATE ELIMINATION EXAMPLE #1: DWARF SECTION GROUP .........................................................226 
FIGURE 74. DUPLICATE ELIMINATION EXAMPLE #1: PRIMARY COMPILATION UNIT ....................................................227 
FIGURE 75. DUPLICATE ELIMINATION EXAMPLE #2: FORTRAN SOURCE .....................................................................228 
FIGURE 76. DUPLICATE ELIMINATION EXAMPLE #2: DWARF SECTION GROUP .........................................................229 
FIGURE 77. DUPLICATE ELIMINATION EXAMPLE #2: PRIMARY UNIT...........................................................................230 
FIGURE 78. DUPLICATE ELIMINATION EXAMPLE #2: COMPANION SOURCE .................................................................230 
FIGURE 79. DUPLICATE ELIMINATION EXAMPLE #2: COMPANION DWARF ...............................................................231 
FIGURE 80. SECTION VERSION NUMBERS....................................................................................................................235 
 







 
 
 


 
 
December 20, 2005  Page xi 


FOREWORD 


 


The DWARF Version 3 specification is very similar to the DWARF Version 2 specification 
developed by the Programming Languages Special Interest Group (PLSIG) of UNIX 
International. Almost all DWARF Version 2 constructs have been retained unchanged in 
DWARF Version 3. It is the intention of the DWARF committee that migrating from DWARF 
Version 2 to DWARF Version 3 should be straightforward and easily accomplished. For further 
information, see http://dwarf.freestandards.org. 


This document is intended to be usable in online as well as traditional paper forms. In the online 
form, blue text is used to indicate what are commonly called "hyperlinks" or "hot links"; these 
facilitate moving around in the document in a manner like that typically found in web browsers. 
Most hyperlinks link to the definition of a term or construct, or to a cited Section or Figure. 
However, attributes in particular are often used in more than one way or context so that there is 
no single definition; for attributes, hyperlinks link to the introductory list of all attributes which 
in turn contains hyperlinks for the multiple usages. The Table of Contents also provides 
hyperlinks to the respective sections. 


In the traditional paper form, the appearance of the hyperlinks on a page of paper does not 
distract the eye because the blue hyperlinks are typically imaged by black and white printers in a 
manner indistinguishable from other text. (Hyperlinks are not underlined for this same reason.) 
Page numbers, a Table of Contents and an Index appropriate to a paper document are available in 
both forms. 


 


 


 


 


 


 


 


 


 



http://dwarf.freestandards.org/





 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page xii  December 20, 2005 


 


 


 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 1  December 20, 2005 


1 INTRODUCTION 
This document defines the format for the information generated by compilers, assemblers and 
linkage editors, that is necessary for symbolic, source-level debugging. The debugging 
information format does not favor the design of any compiler or debugger. Instead, the goal is to 
create a method of communicating an accurate picture of the source program to any debugger in 
a form that is extensible to different languages while retaining backward compatibility.  


The design of the debugging information format is open-ended, allowing for the addition of new 
debugging information to accommodate new languages or debugger capabilities while remaining 
compatible with other languages or different debuggers.  


1.1 Purpose and Scope 


The debugging information format described in this document is designed to meet the symbolic, 
source-level debugging needs of different languages in a unified fashion by requiring language 
independent debugging information whenever possible. Individual needs, such as C++ virtual 
functions or Fortran common blocks are accommodated by creating attributes that are used only 
for those languages. This document is believed to cover most debugging information needs of C, 
C++, Fortran, Modula2 and Pascal; it also covers the basic needs of various other languages. 


This document describes DWARF Version 3, the third generation of debugging information 
based on the DWARF format. DWARF Version 3 extends DWARF Version 2 in an upwardly 
compatible manner to add improved language support for several languages. DWARF Version 3 
retains the DWARF Version 2 style of representation. It adds an additional format that is able to 
accommodate DWARF descriptions that exceed 4 GBytes in size. This new format may be 
attractive for use with large applications on computer systems that support 64-bit addresses. 
(DWARF Version 3 is not needed to support 64-bit addresses as such; DWARF Version 2 is 
already sufficient for that.) 


The intended audience for this document is the developers of both producers and consumers of 
debugging information, typically language compilers, debuggers and other tools that need to 
interpret a binary program in terms of its original source.  


1.2 Overview 


There are two major pieces to the description of the DWARF format in this document. The first 
piece is the informational content of the debugging entries. The second piece is the way the 
debugging information is encoded and represented in an object file.  


The informational content is described in sections two through six. Section two describes the 
overall structure of the information and attributes that is common to many or all of the different 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 2  December 20, 2005 


debugging information entries. Sections three, four and five describe the specific debugging 
information entries and how they communicate the necessary information about the source 
program to a debugger. Section six describes debugging information contained outside of the 
debugging information entries. The encoding of the DWARF information is presented in Section 
seven.  


This organization closely follows that used in the DWARF Version 2 document. Except where 
needed to incorporate new material or to correct errors, text from the DWARF Version 2 text is 
generally reused in this document with little or no modification. 


In the following sections, text in normal font describes required aspects of the DWARF format. 
Text in italics is explanatory or supplementary material, and not part of the format definition 
itself. The several Appendices all consist only of explanatory or supplementary material, and are 
not part of the formal definition. 


1.3 Vendor Extensibility 


This document does not attempt to cover all interesting languages or even to cover all of the 
interesting debugging information needs for its primary target languages (C, C++, Fortran, 
Modula2, and Pascal). Therefore, the document provides vendors a way to define their own 
debugging information tags, attributes, base type encodings, location operations, language 
names, calling conventions and call frame instructions by reserving a portion of the name space 
and valid values for these constructs for vendor specific additions. Vendors may also use 
debugging information entries and attributes defined here in new situations. Future versions of 
this document will not use names or values reserved for vendor specific additions. All names and 
values not reserved for vendor additions, however, are reserved for future versions of this 
document. 


DWARF Version 3 is intended to be permissive rather than prescriptive. Where this specification 
provides a means for describing the source language, implementors are expected to adhere to that 
specification. For language features that are not supported, implementors may use existing 
attributes in novel ways or add vendor-defined attributes. Implementors who make extensions 
are strongly encouraged to design them to be backward compatible with this specification in the 
absence of those extensions. 


1.4 Changes from Version 1 to Version 2 


DWARF Version 2 describes the second generation of debugging information based on the 
DWARF format. While DWARF Version 2 provides new debugging information not available in 
Version 1, the primary focus of the changes for Version 2 is the representation of the 
information, rather than the information content itself. The basic structure of the Version 2 
format remains as in Version 1: the debugging information is represented as a series of 







 INTRODUCTION 
 
 


 
 
December 20, 2005  Page 3 


debugging information entries, each containing one or more attributes (name/value pairs). The 
Version 2 representation, however, is much more compact than the Version 1 representation. In 
some cases, this greater density has been achieved at the expense of additional complexity or 
greater difficulty in producing and processing the DWARF information. The definers believe 
that the reduction in I/O and in memory paging should more than make up for any increase in 
processing time. 


The representation of information changed from Version 1 to Version 2, so that Version 2 
DWARF information is not binary compatible with Version 1 information. To make it easier for 
consumers to support both Version 1 and Version 2 DWARF information, the Version 2 
information has been moved to a different object file section, .debug_info.  


A summary of the major changes made in DWARF Version 2 compared to the DWARF Version 1 
may be found in the DWARF Version 2 document.  


1.5 Changes from Version 2 to Version 3 


The following is a list of the major changes made to the DWARF Debugging Information 
Format since Version 2 of the format was published. The list is not meant to be exhaustive. 


• Make provision for DWARF information files that are larger than 4 GBytes. 


• Allow attributes to refer to debugging information entries in other shared libraries. 


• Add support for Fortran 90 modules as well as allocatable array and pointer types.  


• Add additional base types for C (as revised for 1999). 


• Add support for Java. 


• Add namespace support for C++. 


• Add an optional section for global type names (similar to the global section for objects and 
functions). 


• Adopt UTF-8 as the preferred representation of program name strings. 


• Add improved support for optimized code (discontiguous scopes, end of prologue 
determination, multiple section code generation). 


• Improve the ability to eliminate duplicate DWARF information during linking. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 4  December 20, 2005 


1.5.1 Upward Compatibility 


DWARF Version 3 is structurally upward compatible with DWARF Version 2 except as follows: 


• Certain very large values of the initial length fields that begin DWARF sections as well as 
certain structures are reserved to act as escape codes for future extension; one such extension 
is defined to increase the possible size of DWARF descriptions (see Section 7.4). 


• References that use the attribute form DW_FORM_ref_addr are specified to be four bytes in 
the DWARF 32-bit format and eight bytes in the DWARF 64-bit format, while DWARF 
Version 2 specifies that such references have the same size as an address on the target system 
(see Sections 7.4 and 7.5.4).  


• The return_address_register field in a Common Information Entry record for call frame 
information is changed to unsigned LEB representation (see Section 6.4.1). 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 5  December 20, 2005 


2 GENERAL DESCRIPTION 


2.1 The Debugging Information Entry 


DWARF uses a series of debugging information entries to define a low-level representation of a 
source program. Each debugging information entry is described by an identifying tag and 
contains a series of attributes. The tag specifies the class to which an entry belongs, and the 
attributes define the specific characteristics of the entry.  


The set of required tag names is listed in Figure 1. The debugging information entries they 
identify are described in Sections three, four and five.  


The debugging information entry descriptions in Sections three, four and five generally include 
mention of most, but not necessarily all, of the attributes that are normally or possibly used with 
the entry. Some attributes, whose applicability tends to be pervasive and invariant across kinds 
of debugging information entries, are described in this Section and not necessarily mentioned in 
all contexts where they may be appropriate. Examples include DW_AT_artificial, the declaration 
coordinates, and DW_AT_description, among others. 


The debugging information entries in DWARF Version 3 are intended to exist in the 
.debug_info section of an object file. 


2.2 Attribute Types 


Each attribute value is characterized by an attribute name. No more than one attribute with a 
given name may appear in any debugging information entry. There are no limitations on the 
ordering of attributes within a debugging information entry. 


The defined attribute names and their related uses are listed  in Figure 2. 


The permissible values for an attribute belong to one or more classes of attribute value forms. 
Each form class may be represented in one or more ways. For instance, some attribute values 
consist of a single piece of constant data. “Constant data” is the class of attribute value that those 
attributes may have. There are several representations of constant data, however (one, two, four, 
eight bytes and variable length data). The particular representation for any given instance of an 
attribute is encoded along with the attribute name as part of the information that guides the 
interpretation of a debugging information entry.  


Attribute value forms may belong to one of the classes shown in Figure 3. 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 6  December 20, 2005 


DW_TAG_access_declaration  
DW_TAG_array_type  
DW_TAG_base_type  
DW_TAG_catch_block  
DW_TAG_class_type  
DW_TAG_common_block  
DW_TAG_common_inclusion  
DW_TAG_compile_unit  
DW_TAG_condition 
DW_TAG_const_type  
DW_TAG_constant  
DW_TAG_dwarf_procedure 
DW_TAG_entry_point  
DW_TAG_enumeration_type  
DW_TAG_enumerator  
DW_TAG_file_type  
DW_TAG_formal_parameter  
DW_TAG_friend  
DW_TAG_imported_declaration  
DW_TAG_imported_module  
DW_TAG_imported_unit 
DW_TAG_inheritance  
DW_TAG_inlined_subroutine  
DW_TAG_interface_type  
DW_TAG_label  
DW_TAG_lexical_block  
DW_TAG_member  
DW_TAG_module  
DW_TAG_namelist  


DW_TAG_namelist_item  
DW_TAG_namespace 
DW_TAG_packed_type  
DW_TAG_partial_unit 
DW_TAG_pointer_type  
DW_TAG_ptr_to_member_type  
DW_TAG_reference_type  
DW_TAG_restrict_type 
DW_TAG_set_type  
DW_TAG_shared_type 
DW_TAG_string_type  
DW_TAG_structure_type  
DW_TAG_subprogram  
DW_TAG_subrange_type  
DW_TAG_subroutine_type  
DW_TAG_template_type_parameter  
DW_TAG_template_value_parameter  
DW_TAG_thrown_type  
DW_TAG_try_block  
DW_TAG_typedef  
DW_TAG_union_type  
DW_TAG_unspecified_parameters  
DW_TAG_unspecified_type  
DW_TAG_variable  
DW_TAG_variant  
DW_TAG_variant_part  
DW_TAG_volatile_type  
DW_TAG_with_stmt  


 
Figure 1. Tag names 







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 7 


Attribute Identifies or Specifies 


DW_AT_abstract_origin Inline instances of inline subprograms 
Out-of-line instances of inline subprograms 


DW_AT_accessibility 
C++ and Ada declarations 
C++ base classes 
C++ inherited members 


DW_AT_address_class Pointer or reference types 
Subroutine or subroutine type 


DW_AT_allocated Allocation status of types 


DW_AT_artificial Objects or types that are not 
actually declared in the source 


DW_AT_associated Association status of types 


DW_AT_base_types Primitive data types of compilation unit 


DW_AT_binary_scale Binary scale factor for fixed-point type 


DW_AT_bit_offset Base type bit location 
Data member bit location 


DW_AT_bit_size Base type bit size 
Data member bit size 


DW_AT_bit_stride Array element stride (of array type) 
Subrange stride (dimension of array type) 


DW_AT_byte_size Data object or data type size  


DW_AT_byte_stride Array dimension stride (from enumeration) 
Array dimension stride (from subrange) 


DW_AT_call_column Column position of inlined subroutine call 


DW_AT_call_file File containing inlined subroutine call 


DW_AT_call_line Line number of inlined subroutine call 


DW_AT_calling_convention Subprogram calling convention 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 8  December 20, 2005 


Attribute Identifies or Specifies 


DW_AT_common_reference Common block usage 


DW_AT_comp_dir Compilation directory 


DW_AT_const_value 
Constant object 
Enumeration literal value 
Template value parameter 


DW_AT_containing_type Containing type of pointer to member type 


DW_AT_count Elements of subrange type 


DW_AT_data_location Indirection to actual data 


DW_AT_data_member_location Data member location 
Inherited member location 


DW_AT_decimal_scale Decimal scale factor 


DW_AT_decimal_sign Decimal sign representation 


DW_AT_decl_column Column position of source declaration 


DW_AT_decl_file File containing source declaration 


DW_AT_decl_line Line number of source declaration 


DW_AT_declaration Incomplete, non-defining, or separate entity declaration 


DW_AT_default_value Default value of parameter 


DW_AT_description Artificial name or description 


DW_AT_digit_count Digit count for packed decimal or numeric string type 


DW_AT_discr Discriminant of variant part 


DW_AT_discr_list List of discriminant values 


DW_AT_discr_value Discriminant value 


DW_AT_elemental Elemental property of a subroutine 







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 9 


Attribute Identifies or Specifies 


DW_AT_encoding Encoding of base type 


DW_AT_endianity Endianity of data 


DW_AT_entry_pc 
Entry address of module initialization 
Entry address of subprogram 
Entry address of inlined subprogram 


DW_AT_explicit Explicit property of member function 


DW_AT_extension Previous namespace extension or original namespace 


DW_AT_external External subroutine 
External variable 


DW_AT_frame_base Subroutine frame base address 


DW_AT_friend Friend relationship 


DW_AT_high_pc Contiguous range of code addresses  


DW_AT_identifier_case Identifier case rule 


DW_AT_import 


Imported declaration 
Imported unit 
Namespace alias 
Namespace using declaration 
Namespace using directive 


DW_AT_inline Abstract instance 
Inlined subroutine 


DW_AT_is_optional Optional parameter 


DW_AT_language Programming language 


DW_AT_location Data object location  


DW_AT_low_pc Code address or range of addresses  


DW_AT_lower_bound Lower bound of subrange 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 10  December 20, 2005 


Attribute Identifies or Specifies 


DW_AT_macro_info Macro information (#define, #undef) 


DW_AT_mutable Mutable property of member data 


DW_AT_name Name of declaration 
Path name of compilation source 


DW_AT_namelist_item Namelist item 


DW_AT_object_pointer Object (this, self) pointer of member function 


DW_AT_ordering Array row/column ordering 


DW_AT_picture_string Picture string for numeric string type 


DW_AT_priority Module priority 


DW_AT_producer Compiler identification 


DW_AT_prototyped Subroutine prototype 


DW_AT_pure Pure property of a subroutine 


DW_AT_ranges Non-contiguous range of code addresses 


DW_AT_recursive Recursive property of a subroutine 


DW_AT_return_addr Subroutine return address save location 


DW_AT_segment Addressing information 


DW_AT_sibling Debugging information entry relationship 


DW_AT_small Scale factor for fixed-point type 


DW_AT_specification Incomplete, non-defining, or separate declaration 
corresponding to a declaration 


DW_AT_start_scope Object declaration 
Type declaration 


DW_AT_static_link Location of uplevel frame 







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 11 


Attribute Identifies or Specifies 


DW_AT_stmt_list Line number information for unit 


DW_AT_string_length String length of string type 


DW_AT_threads_scaled UPC array bound THREADS scale factor 


DW_AT_trampoline Target subroutine 


DW_AT_type Type of declaration 
Type of subroutine return 


DW_AT_upper_bound Upper bound of subrange 


DW_AT_use_location Member location for pointer to member type 


DW_AT_use_UTF8 Compilation unit uses UTF-8 strings 


DW_AT_variable_parameter Non-constant parameter flag 


DW_AT_virtuality 
Virtuality indication 
Virtuality of base class  
Virtuality of function 


DW_AT_visibility Visibility of declaration 


DW_AT_vtable_elem_location Virtual function vtable slot 


Figure 2. Attribute names 


 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 12  December 20, 2005 


Attribute 
Class General Use and Encoding 


address Refers to some location in the address space of the described program.  


block An arbitrary number of uninterpreted bytes of data.  


constant 


One, two, four or eight bytes of uninterpreted data, or data encoded in the variable 
length format known as LEB128 (see Section 7.6.). 


Most constant values are integers of one kind or another (codes, offsets, counts, 
and so on); these are sometimes called “integer constants” for emphasis. 


flag A small constant that indicates the presence or absence of an attribute.  


lineptr Refers to a location in the DWARF section that holds line number information. 


loclistptr Refers to a location in the DWARF section that holds location lists, which 
describe objects whose location can change during their lifetime. 


macptr Refers to a location in the DWARF section that holds macro definition 
information. 


rangelistptr Refers to a location in the DWARF section that holds non-contiguous address 
ranges. 


reference 


Refers to one of the debugging information entries that describe the program. 
There are two types of reference. The first is an offset relative to the beginning of 
the compilation unit in which the reference occurs and must refer to an entry 
within that same compilation unit. The second type of reference is the offset of a 
debugging information entry in any compilation unit, including one different from 
the unit containing the reference.  


string 
A null-terminated sequence of zero or more (non-null) bytes. Data in this form 
are generally printable strings. Strings may be represented directly in the 
debugging information entry or as an offset in a separate string table. 


Figure 3. Classes of Attribute Value 







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 13 


2.3 Relationship of Debugging Information Entries 


A variety of needs can be met by permitting a single debugging information entry to “own” an 
arbitrary number of other debugging entries and by permitting the same debugging information 
entry to be one of many owned by another debugging information entry. This makes it possible to 
describe, for example, the static block structure within a source file, show the members of a 
structure, union, or class, and associate declarations with source files or source files with shared 
objects.  


The ownership relation of debugging information entries is achieved naturally because the 
debugging information is represented as a tree. The nodes of the tree are the debugging 
information entries themselves. The child entries of any node are exactly those debugging 
information entries owned by that node.  


While the ownership relation of the debugging information entries is represented as a tree, other 
relations among the entries exist, for example, a pointer from an entry representing a variable to 
another entry representing the type of that variable. If all such relations are taken into account, 
the debugging entries form a graph, not a tree. 


The tree itself is represented by flattening it in prefix order. Each debugging information entry is 
defined either to have child entries or not to have child entries (see Section 7.5.3). If an entry is 
defined not to have children, the next physically succeeding entry is a sibling. If an entry is 
defined to have children, the next physically succeeding entry is its first child. Additional 
children are represented as siblings of the first child. A chain of sibling entries is terminated by a 
null entry.  


In cases where a producer of debugging information feels that it will be important for consumers 
of that information to quickly scan chains of sibling entries, while ignoring the children of 
individual siblings, that producer may attach a DW_AT_sibling attribute to any debugging 
information entry. The value of this attribute is a reference to the sibling entry of the entry to 
which the attribute is attached. 


2.4 Target Addresses 


 Many places in this document refer to the size of an address on the target architecture (or 
equivalently, target machine) to which a DWARF description applies. For processors which can 
be configured to have different address sizes or different instruction sets, the intent is to refer to 
the configuration which is either the default for that processor or which is specified by the object 
file or executable file which contains the DWARF information. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 14  December 20, 2005 


For example, if a particular target architecture supports both 32-bit and 64-bit addresses, the 
compiler will generate an object file which specifies that it contains executable code generated 
for one or the other of these address sizes. In that case, the DWARF debugging information 
contained in this object file will use the same address size. 


Architectures which have multiple instruction sets are supported by the _isa_ entry in the line 
number information (see Section 6.2.2). 


2.5 DWARF Expressions 


DWARF expressions describe how to compute a value or name a location during debugging of a 
program. They are expressed in terms of DWARF operations that operate on a stack of values. 


All DWARF operations are encoded as a stream of opcodes that are each followed by zero or 
more literal operands. The number of operands is determined by the opcode.  


In addition to the general operations that are defined here, additional register name operations 
(which are specific to location expressions) are defined in Section 2.6.1. 


In DWARF Version 2, all DWARF expressions were called "location expressions", whether they 
computed a location (address, register) or not. This revision defines DWARF expressions as the 
primary concept, and then defines location expressions as DWARF expressions that are used to 
compute or name a location. 


2.5.1 General Operations 


Each general operation represents a postfix operation on a simple stack machine. Each element 
of the stack is the size of an address on the target machine. The value on the top of the stack after 
“executing” the DWARF expression is taken to be the result (the address of the object, the value 
of the array bound, the length of a dynamic string, and so on).  


2.5.1.1 Literal Encodings 


The following operations all push a value onto the DWARF stack. 


1. DW_OP_lit0, DW_OP_lit1, ..., DW_OP_lit31  
The DW_OP_litn operations encode the unsigned literal values from 0 through 31, inclusive.  


2. DW_OP_addr  
The DW_OP_addr operation has a single operand that encodes a machine address and whose 
size is the size of an address on the target machine.  







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 15 


3. DW_OP_const1u  
The single operand of the DW_OP_const1u operation provides a 1-byte unsigned integer 
constant.  


4. DW_OP_const1s  
The single operand of the DW_OP_const1s operation provides a 1-byte signed integer 
constant.  


5. DW_OP_const2u  
The single operand of the DW_OP_const2u operation provides a 2-byte unsigned integer 
constant.  


6. DW_OP_const2s  
The single operand of the DW_OP_const2s operation provides a 2-byte signed integer 
constant.  


7. DW_OP_const4u  
The single operand of the DW_OP_const4u operation provides a 4-byte unsigned integer 
constant.  


8. DW_OP_const4s  
The single operand of the DW_OP_const4s operation provides a 4-byte signed integer 
constant.  


9. DW_OP_const8u  
The single operand of the DW_OP_const8u operation provides an 8-byte unsigned integer 
constant.  


10. DW_OP_const8s  
The single operand of the DW_OP_const8s operation provides an 8-byte signed integer 
constant.  


11. DW_OP_constu  
The single operand of the DW_OP_constu operation provides an unsigned LEB128 integer 
constant.  


12. DW_OP_consts  
The single operand of the DW_OP_consts operation provides a signed LEB128 integer 
constant.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 16  December 20, 2005 


2.5.1.2 Register Based Addressing 


The following operations push a value onto the stack that is the result of adding the contents of a 
register with a given signed offset.  


1. DW_OP_fbreg  
The DW_OP_fbreg operation provides a signed LEB128 offset from the address specified by 
the location description in the DW_AT_frame_base attribute of the current function. (This is 
typically a “stack pointer” register plus or minus some offset. On more sophisticated systems 
it might be a location list that adjusts the offset according to changes in the stack pointer as 
the PC changes.)  


2. DW_OP_breg0, DW_OP_breg1, ..., DW_OP_breg31  
The single operand of the DW_OP_bregn operations provides a signed LEB128 offset from 
the specified register.  


3. DW_OP_bregx  
The DW_OP_bregx operation has two operands: a register which is defined with an unsigned 
LEB128 number, followed by a signed LEB128 offset.  


2.5.1.3 Stack Operations 


The following operations manipulate the DWARF stack. Operations that index the stack assume 
that the top of the stack (most recently added entry) has index 0.  


1. DW_OP_dup  
The DW_OP_dup operation duplicates the value at the top of the stack.  


2. DW_OP_drop  
The DW_OP_drop operation pops the value at the top of the stack.  


3. DW_OP_pick  
The single operand of the DW_OP_pick operation provides a 1-byte index. The stack entry 
with the specified index (0 through 255, inclusive) is pushed on the stack.  


4. DW_OP_over  
The DW_OP_over operation duplicates the entry currently second in the stack at the top of 
the stack. This is equivalent to a DW_OP_pick operation, with index 1.  


5. DW_OP_swap  
The DW_OP_swap operation swaps the top two stack entries. The entry at the top of the 
stack becomes the second stack entry, and the second entry becomes the top of the stack.  







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 17 


6. DW_OP_rot  
The DW_OP_rot operation rotates the first three stack entries. The entry at the top of the 
stack becomes the third stack entry, the second entry becomes the top of the stack, and the 
third entry becomes the second entry.  


7. DW_OP_deref  
The DW_OP_deref operation pops the top stack entry and treats it as an address. The value 
retrieved from that address is pushed. The size of the data retrieved from the dereferenced 
address is the size of an address on the target machine.  


8. DW_OP_deref_size  
The DW_OP_deref_size operation behaves like the DW_OP_deref operation: it pops the top 
stack entry and treats it as an address. The value retrieved from that address is pushed. In the 
DW_OP_deref_size operation, however, the size in bytes of the data retrieved from the 
dereferenced address is specified by the single operand. This operand is a 1-byte unsigned 
integral constant whose value may not be larger than the size of an address on the target 
machine. The data retrieved is zero extended to the size of an address on the target machine 
before being pushed on the expression stack.  


9. DW_OP_xderef  
The DW_OP_xderef operation provides an extended dereference mechanism. The entry at 
the top of the stack is treated as an address. The second stack entry is treated as an “address 
space identifier” for those architectures that support multiple address spaces. The top two 
stack elements are popped, a data item is retrieved through an implementation-defined 
address calculation and pushed as the new stack top. The size of the data retrieved from the 
dereferenced address is the size of an address on the target machine.  


10. DW_OP_xderef_size  
The DW_OP_xderef_size operation behaves like the DW_OP_xderef operation: the entry at 
the top of the stack is treated as an address. The second stack entry is treated as an “address 
space identifier” for those architectures that support multiple address spaces. The top two 
stack elements are popped, a data item is retrieved through an implementation-defined 
address calculation and pushed as the new stack top. In the DW_OP_xderef_size operation, 
however, the size in bytes of the data retrieved from the dereferenced address is specified by 
the single operand. This operand is a 1-byte unsigned integral constant whose value may not 
be larger than the size of an address on the target machine. The data retrieved is zero 
extended to the size of an address on the target machine before being pushed on the 
expression stack.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 18  December 20, 2005 


11. DW_OP_push_object_address 
The DW_OP_push_object_address operation pushes the address of the object currently being 
evaluated as part of evaluation of a user presented expression. This object may correspond to 
an independent variable described by its own DIE or it may be a component of an array, 
structure, or class whose address has been dynamically determined by an earlier step during 
user expression evaluation. 
 
This operator provides explicit functionality (especially for arrays involving descriptors) that 
is analogous to the implicit push of the base address of a structure prior to evaluation of a 
DW_AT_data_member_location to access a data member of a structure. For an example, see 
Appendix D.2. 


12. DW_OP_form_tls_address 
The DW_OP_form_tls_address operation pops a value from the stack, translates it into an 
address in the current thread's thread-local storage block, and pushes the address. If the 
DWARF expression containing the DW_OP_form_tls_address operation belongs to the main 
executable's DWARF info, the operation uses the main executable's thread-local storage 
block; if the expression belongs to a shared library's DWARF info, then it uses that shared 
library's thread-local storage block. 
 
Some implementations of C and C++ support a __thread storage class. Variables with this 
storage class have distinct values and addresses in distinct threads, much as automatic 
variables have distinct values and addresses in each function invocation. Typically, there is a 
single block of storage containing all __thread variables declared in the main executable, 
and a separate block for the variables declared in each dynamically loaded library. 
Computing the address of the appropriate block can be complex (in some cases, the compiler 
emits a function call to do it), and difficult to describe using ordinary DWARF location 
expressions. DW_OP_form_tls_address leaves the computation to the consumer. 


13. DW_OP_call_frame_cfa 
The DW_OP_call_frame_cfa operation pushes the value of the CFA, obtained from the Call 
Frame Information (see Section 6.4). 
 
Although the value of DW_AT_frame_base can be computed using other DWARF expression 
operators, in some cases this would require an extensive location list because the values of 
the registers used in computing the CFA change during a subroutine. If the Call Frame 
Information is present, then it already encodes such changes, and it is space efficient to 
reference that. 







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 19 


2.5.1.4 Arithmetic and Logical Operations 


The following provide arithmetic and logical operations. The arithmetic operations perform 
“addressing arithmetic,” that is, unsigned arithmetic that wraps on an address-sized boundary. 
The operations do not cause an exception on overflow.  


1. DW_OP_abs  
The DW_OP_abs operation pops the top stack entry, interprets it as a signed value and 
pushes its absolute value. If the absolute value can not be represented, the result is undefined. 


2. DW_OP_and  
The DW_OP_and operation pops the top two stack values, performs a bitwise and operation 
on the two, and pushes the result.  


3. DW_OP_div  
The DW_OP_div operation pops the top two stack values, divides the former second entry by 
the former top of the stack using signed division, and pushes the result.  


4. DW_OP_minus  
The DW_OP_minus operation pops the top two stack values, subtracts the former top of the 
stack from the former second entry, and pushes the result.  


5. DW_OP_mod  
The DW_OP_mod operation pops the top two stack values and pushes the result of the 
calculation: former second stack entry modulo the former top of the stack.  


6. DW_OP_mul  
The DW_OP_mul operation pops the top two stack entries, multiplies them together, and 
pushes the result.  


7. DW_OP_neg  
The DW_OP_neg operation pops the top stack entry, and pushes its negation.  


8. DW_OP_not  
The DW_OP_not operation pops the top stack entry, and pushes its bitwise complement.  


9. DW_OP_or  
The DW_OP_or operation pops the top two stack entries, performs a bitwise or operation on 
the two, and pushes the result.  


10. DW_OP_plus  
The DW_OP_plus operation pops the top two stack entries, adds them together, and pushes 
the result.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 20  December 20, 2005 


11. DW_OP_plus_uconst  
The DW_OP_plus_uconst operation pops the top stack entry, adds it to the unsigned LEB128 
constant operand and pushes the result. 
 
This operation is supplied specifically to be able to encode more field offsets in two bytes 
than can be done with “DW_OP_litn DW_OP_plus”.  


12. DW_OP_shl  
The DW_OP_shl operation pops the top two stack entries, shifts the former second entry left 
by the number of bits specified by the former top of the stack, and pushes the result.  


13. DW_OP_shr  
The DW_OP_shr operation pops the top two stack entries, shifts the former second entry 
right logically (filling with zero bits) by the number of bits specified by the former top of the 
stack, and pushes the result.  


14. DW_OP_shra  
The DW_OP_shra operation pops the top two stack entries, shifts the former second entry 
right arithmetically (divide the magnitude by 2, keep the same sign for the result) by the 
number of bits specified by the former top of the stack, and pushes the result.  


15. DW_OP_xor  
The DW_OP_xor operation pops the top two stack entries, performs the bitwise exclusive-or 
operation on the two, and pushes the result.  


2.5.1.5 Control Flow Operations 


The following operations provide simple control of the flow of a DWARF expression.  


1. DW_OP_le, DW_OP_ge, DW_OP_eq, DW_OP_lt, DW_OP_gt, DW_OP_ne 
The six relational operators each: 


• pop the top two stack values, 


• compare the operands: 
     <former second entry> <relational operator> <former top entry> 


• push the constant value 1 onto the stack if the result of the operation is true or the 
constant value 0 if the result of the operation is false. 


The comparisons are done as signed operations. The six operators are DW_OP_le (less than 
or equal to), DW_OP_ge (greater than or equal to), DW_OP_eq (equal to), DW_OP_lt (less 
than), DW_OP_gt (greater than) and DW_OP_ne (not equal to).  







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 21 


2. DW_OP_skip  
DW_OP_skip is an unconditional branch. Its single operand is a 2-byte signed integer 
constant. The 2-byte constant is the number of bytes of the DWARF expression to skip 
forward or backward from the current operation, beginning after the 2-byte constant.  


3. DW_OP_bra  
DW_OP_bra is a conditional branch. Its single operand is a 2-byte signed integer constant. 
This operation pops the top of stack. If the value popped is not the constant 0, the 2-byte 
constant operand is the number of bytes of the DWARF expression to skip forward or 
backward from the current operation, beginning after the 2-byte constant.  


4. DW_OP_call2, DW_OP_call4, DW_OP_call_ref 
DW_OP_call2, DW_OP_call4, and DW_OP_call_ref perform subroutine calls during 
evaluation of a DWARF expression. For DW_OP_call2 and DW_OP_call4, the operand is 
the 2- or 4-byte unsigned offset, respectively, of a debugging information entry in the current 
compilation unit. The DW_OP_call_ref operator has a single operand. In the 32-bit DWARF 
format, the operand is a 4-byte unsigned value; in the 64-bit DWARF format, it is an 8-byte 
unsigned value (see Section 7.4). The operand is used as the offset of a debugging 
information entry in a .debug_info section which may be contained in a shared object for 
executable other than that containing the operator. For references from one shared object or 
executable to another, the relocation must be performed by the consumer. 
 
Operand interpretation of DW_OP_call2, DW_OP_call4 and DW_OP_call_ref is exactly 
like that for DW_FORM_ref2, DW_FORM_ref4 and DW_FORM_ref_addr, respectively (see 
Section 7.5.4). 
 
These operations transfer control of DWARF expression evaluation to the DW_AT_location 
attribute of the referenced DIE. If there is no such attribute, then there is no effect. Execution 
of the DWARF expression of a DW_AT_location attribute may add to and/or remove from 
values on the stack. Execution returns to the point following the call when the end of the 
attribute is reached. Values on the stack at the time of the call may be used as parameters by 
the called expression and values left on the stack by the called expression may be used as 
return values by prior agreement between the calling and called expressions. 


2.5.1.6 Special Operations 


There is one special operation currently defined:  


1. DW_OP_nop  
The DW_OP_nop operation is a place holder. It has no effect on the location stack or any of 
its values.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 22  December 20, 2005 


2.5.2 Example Stack Operations 


The stack operations defined in Section 2.5.1.3 are fairly conventional, but the following 
examples illustrate their behavior graphically.  
 Before         Operation        After 
 
0     17       DW_OP_dup        0     17 
1     29                        1     17 
2   1000                        2     29 
                                3   1000 
 
0     17       DW_OP_drop       0     29 
1     29                        1   1000 
2   1000 
 
0     17       DW_OP_pick 2     0   1000 
1     29                        1     17 
2   1000                        2     29 
                                3   1000 
 
0     17       DW_OP_over       0     29 
1     29                        1     17 
2   1000                        2     29 
                                3   1000 
 
0     17       DW_OP_swap       0     29 
1     29                        1     17 
2   1000                        2   1000 
 
0     17       DW_OP_rot        0     29 
1     29                        1   1000 
2   1000                        2     17 


 


2.6 Location Descriptions 


Debugging information must provide consumers a way to find the location of program variables, 
determine the bounds of dynamic arrays and strings, and possibly to find the base address of a 
subroutine’s stack frame or the return address of a subroutine. Furthermore, to meet the needs 
of recent computer architectures and optimization techniques, debugging information must be 
able to describe the location of an object whose location changes over the object’s lifetime.  







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 23 


Information about the location of program objects is provided by location descriptions. Location 
descriptions can be either of two forms:  


1. Location expressions, which are a language independent representation of addressing rules of 
arbitrary complexity built from DWARF expressions. They are sufficient for describing the 
location of any object as long as its lifetime is either static or the same as the lexical block 
that owns it, and it does not move throughout its lifetime.  


2. Location lists, which are used to describe objects that have a limited lifetime or change their 
location throughout their lifetime. Location lists are more completely described below.  


The two forms are distinguished in a context sensitive manner. As the value of an attribute, a 
location expression is encoded using class block and a location list is encoded using class 
loclistptr (which serves as an offset into a separate location list table).  


Note: The DWARF Version 1 concept of “location descriptions” was replaced in Version 2 with 
this new abstraction because it is denser and more descriptive.  


2.6.1 Register Name Operators 


The following DWARF operations can be used to name a register. They can be used only in 
location expressions. Each register name operator must be used alone (as a DWARF expression 
consisting of just that one operation).  


Note that the register number represents a DWARF specific mapping of numbers onto the actual 
registers of a given architecture. The mapping should be chosen to gain optimal density and 
should be shared by all users of a given architecture. It is recommended that this mapping be 
defined by the ABI authoring committee for each architecture. 


1. DW_OP_reg0, DW_OP_reg1, ..., DW_OP_reg31  
The DW_OP_regn operations encode the names of up to 32 registers, numbered from 0 
through 31, inclusive. The object addressed is in register n. 


2. DW_OP_regx  
The DW_OP_regx operation has a single unsigned LEB128 literal operand that encodes the 
name of a register. 


2.6.2 Simple Location Expressions 


A simple location expression describes the location of one contiguous piece of a value. A simple 
location expression is either: 


1. A non-empty DWARF expression, whose value is the address of the piece of the value in 
memory 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 24  December 20, 2005 


2. A DWARF expression containing no operations, which represents a piece of an object that is 
present in the source code but not in the object code (perhaps due to optimization), or 


3. A register name operator, appearing alone as a single opcode, without other DWARF 
expression operators, representing a piece of the object located in the given register. 


2.6.3 Composition Operators 


A composition operator describes the location of a piece of a value which may be contained in 
part of a register or stored in more than one location; it does not compute a value nor store any 
result on the DWARF stack. There may be one or more composition operators in a single 
DWARF location expression. A series of such operators describes the parts of a value in memory 
address order. 


Each composition operator may be immediately preceeded by a register name operator or an 
addressing operation which describes the location where part of the resultant value is contained. 
 
1. DW_OP_piece  


DW_OP_piece takes a single operand, which is an unsigned LEB128 number. The number 
describes the size in bytes of the piece of the object referenced by the DWARF expression 
whose result is at the top of the stack. If the piece is located in a register, but does not occupy 
the entire register, the placement of the piece within that register is defined by the ABI. 


Many compilers store a single variable in sets of registers, or store a variable partially in 
memory and partially in registers. DW_OP_piece provides a way of describing how large a 
part of a variable a particular DWARF expression refers to. 


2. DW_OP_bit_piece 
DW_OP_bit_piece takes two operands. The first is an unsigned LEB128 number that gives 
the size in bits of the piece. The second is an unsigned LEB128 number that gives the offset 
in bits from the location defined by the preceding DWARF location expression. 
 
Interpretation of the offset depends on the kind of location expression. If the location is null, 
the offset doesn’t matter and the DW_OP_bit_piece operator describes a piece consisting of 
the given number of bits whose values are undefined. If the location is a register, the offset is 
from the least significant bit end of the register. If the location is a memory address, the 
DW_OP_bit_piece operator describes a sequence of bits relative to the location whose 
address is on the top of the DWARF stack using the bit numbering and direction conventions 
that are appropriate to the current language on the target system. 


DW_OP_bit_piece is used instead of DW_OP_piece when the piece to be assembled into a value 
or assigned to is not byte-sized or is not at the start of a register or addressable unit of memory. 







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 25 


 
2.6.4 Location Expressions 


A location expression is either: 


1. A simple location expression, representing an object which exists in one piece at the given 
location, or 


2. Two or more simple location expressions, each of which is followed by one composition 
operator. Each simple location expression describes the location of one piece of the object; 
each composition operator describes which part of the object is located there. Each simple 
location expression that is a DWARF expression is evaluated independently of any others (as 
though on its own separate stack). 


In the case of locations used for structure members, the computation implicitly pushes the base 
address of the immediately containing structure on the stack before evaluation of the addressing 
operation.  


2.6.5 Example Location Expressions 


The addressing expression represented by a location expression, if evaluated, generates the 
runtime address of the value of a symbol except where the DW_OP_regn, or DW_OP_regx 
operations are used.  


Here are some examples of how DWARF operations are used to form location expressions:  
DW_OP_reg3 


The value is in register 3. 
 
DW_OP_regx 54 


The value is in register 54. 
 
DW_OP_addr 0x80d0045c 


The value of a static variable is at machine address 0x80d0045c. 
 
DW_OP_breg11 44 


Add 44 to the value in register 11 to get the address of an automatic 
variable instance. 


 
DW_OP_fbreg -50 


Given an DW_AT_frame_base value of “DW_OP_breg31 64,” this example 
computes the address of a local variable that is -50 bytes from a 
logical frame pointer that is computed by adding 64 to the current 
stack pointer (register 31). 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 26  December 20, 2005 


DW_OP_bregx 54 32 DW_OP_deref 
A call-by-reference parameter whose address is in the word 32 bytes 
from where register 54 points. 


 
DW_OP_plus_uconst 4 


A structure member is four bytes from the start of the structure 
instance. The base address is assumed to be already on the stack. 


 
DW_OP_reg3 DW_OP_piece 4 DW_OP_reg10 DW_OP_piece 2 


A variable whose first four bytes reside in register 3 and whose next 
two bytes reside in register 10. 


 
DW_OP_reg0 DW_OP_piece 4 DW_OP_piece 4 DW_OP_fbreg -12 DW_OP_piece 4 


A twelve byte value whose first four bytes reside in register zero, 
whose middle four bytes are unavailable (perhaps due to optimization), 
and whose last four bytes are in memory, 12 bytes before the frame 
base. 


2.6.6 Location Lists 


Location lists are used in place of location expressions whenever the object whose location is 
being described can change location during its lifetime. Location lists are contained in a separate 
object file section called .debug_loc. A location list is indicated by a location attribute whose 
value is represented as an offset from the beginning of the .debug_loc section to the first byte of 
the list for the object in question.  


Each entry in a location list is either a location list entry, a base address selection entry, or an end 
of list entry.  


A location list entry consists of:  


1. A beginning address offset. This address offset has the size of an address and is relative to 
the applicable base address of the compilation unit referencing this location list. It marks the 
beginning of the address range over which the location is valid.  


2. An ending address offset. This address offset again has the size of an address and is relative 
to the applicable base address of the compilation unit referencing this location list. It marks 
the first address past the end of the address range over which the location is valid. The ending 
address must be greater than or equal to the beginning address. 
 
A location list entry (but not a base address selection or end of list entry) whose beginning 
and ending addresses are equal has no effect because the size of the range covered by such 
an entry is zero. 


3. A location expression describing the location of the object over the range specified by the 
beginning and end addresses.  







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 27 


The applicable base address of a location list entry is determined by the closest preceding base 
address selection entry (see below) in the same location list. If there is no such selection entry, 
then the applicable base address defaults to the base address of the compilation unit (see 
Section 3.1). 


In the case of a compilation unit where all of the machine code is contained in a single 
contiguous section, no base address selection entry is needed.  


Address ranges may overlap. When they do, they describe a situation in which an object exists 
simultaneously in more than one place. If all of the address ranges in a given location list do not 
collectively cover the entire range over which the object in question is defined, it is assumed that 
the object is not available for the portion of the range that is not covered.  


A base address selection entry consists of:  


1. The value of the largest representable address offset (for example, 0xffffffff when the size of 
an address is 32 bits). 


2. An address, which defines the appropriate base address for use in interpreting the beginning 
and ending address offsets of subsequent entries of the location list. 


A base address selection entry affects only the list in which it is contained.  


The end of any given location list is marked by an end of list entry, which consists of a 0 for the 
beginning address offset and a 0 for the ending address offset. A location list containing only an 
end of list entry describes an object that exists in the source code but not in the executable 
program. 


Neither a base address selection entry nor an end of list entry includes a location expression.  


A base address selection entry and an end of list entry for a location list are identical to a base 
address selection entry and end of list entry, respectively, for a range list (see Section 2.17.3) in 
interpretation and representation. 


2.7 Types of Declarations 


Any debugging information entry describing a declaration that has a type has a DW_AT_type 
attribute, whose value is a reference to another debugging information entry. The entry 
referenced may describe a base type, that is, a type that is not defined in terms of other data 
types, or it may describe a user-defined type, such as an array, structure or enumeration. 
Alternatively, the entry referenced may describe a type modifier: constant, packed, pointer, 
reference or volatile, which in turn will reference another entry describing a type or type 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 28  December 20, 2005 


modifier (using a DW_AT_type attribute of its own). See Section 5 for descriptions of the entries 
describing base types, user-defined types and type modifiers.  


2.8 Accessibility of Declarations 


Some languages, notably C++ and Ada, have the concept of the accessibility of an object or of 
some other program entity. The accessibility specifies which classes of other program objects 
are permitted access to the object in question.  


The accessibility of a declaration is represented by a DW_AT_accessibility attribute, whose 
value is a constant drawn from the set of codes listed in Figure 4. 
 


DW_ACCESS_public 


DW_ACCESS_private 


DW_ACCESS_protected 


Figure 4. Accessibility codes 


2.9 Visibility of Declarations 


Several languages have the concept of the visibility of a declaration. The visibility specifies 
which declarations are to be visible outside of the entity in which they are declared.  


The visibility of a declaration is represented by a DW_AT_visibility attribute, whose value is a 
constant drawn from the set of codes listed in Figure 5. 
 


DW_VIS_local 


DW_VIS_exported 


DW_VIS_qualified 


Figure 5. Visibility codes 







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 29 


2.10 Virtuality of Declarations 


C++ provides for virtual and pure virtual structure or class member functions and for virtual 
base classes.  


The virtuality of a declaration is represented by a DW_AT_virtuality attribute, whose value is a 
constant drawn from the set of codes listed in Figure 6. 
 


DW_VIRTUALITY_none  


DW_VIRTUALITY_virtual  


DW_VIRTUALITY_pure_virtual  


Figure 6. Virtuality codes 


2.11 Artificial Entries 


A compiler may wish to generate debugging information entries for objects or types that were 
not actually declared in the source of the application. An example is a formal parameter entry to 
represent the hidden this parameter that most C++ implementations pass as the first argument 
to non-static member functions.  


Any debugging information entry representing the declaration of an object or type artificially 
generated by a compiler and not explicitly declared by the source program may have a 
DW_AT_artificial attribute. The value of this attribute is a flag.  


2.12 Segmented Addresses 


In some systems, addresses are specified as offsets within a given segment rather than as 
locations within a single flat address space.  


Any debugging information entry that contains a description of the location of an object or 
subroutine may have a DW_AT_segment attribute, whose value is a location description. The 
description evaluates to the segment value of the item being described. If the entry containing the 
DW_AT_segment attribute has a DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges or 
DW_AT_entry_pc attribute, or a location description that evaluates to an address, then those 
address values represent the offset portion of the address within the segment specified by 
DW_AT_segment.  


If an entry has no DW_AT_segment attribute, it inherits the segment value from its parent entry. 
If none of the entries in the chain of parents for this entry back to its containing compilation unit 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 30  December 20, 2005 


entry have DW_AT_segment attributes, then the entry is assumed to exist within a flat address 
space. Similarly, if the entry has a DW_AT_segment attribute containing an empty location 
description, that entry is assumed to exist within a flat address space.  


Some systems support different classes of addresses. The address class may affect the way a 
pointer is dereferenced or the way a subroutine is called.  


Any debugging information entry representing a pointer or reference type or a subroutine or 
subroutine type may have a DW_AT_address_class attribute, whose value is an integer constant. 
The set of permissible values is specific to each target architecture. The value DW_ADDR_none, 
however, is common to all encodings, and means that no address class has been specified.  


For example, the Intel386 ™ processor might use the following values:  
 


Name Value Meaning  


DW_ADDR_none 
DW_ADDR_near16
DW_ADDR_far16 
DW_ADDR_huge16
DW_ADDR_near32
DW_ADDR_far32 


0 
1 
2 
3 
4 
5 


no class specified 
16-bit offset, no segment 
16-bit offset, 16-bit segment 
16-bit offset, 16-bit segment 
32-bit offset, no segment 
32-bit offset, 16-bit segment  


Figure 7. Example address class codes 


2.13 Non-Defining Declarations and Completions 


A debugging information entry representing a program entity typically represents the defining 
declaration of that entity. In certain contexts, however, a debugger might need information about 
a declaration of an entity that is not also a definition, or is otherwise incomplete, to evaluate an 
expression correctly.  







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 31 


As an example, consider the following fragment of C code:  
void myfunc() 
{ 
     int x; 
     { 
          extern float x; 
          g(x); 
     } 
} 


C scoping rules require that the value of the variable x passed to the function g is the value of the 
global variable x rather than of the local version.  


2.13.1 Non-Defining Declarations 


Debugging information entries that represent non-defining or otherwise incomplete declarations 
of a program entity have a DW_AT_declaration attribute, whose value is a flag.  


2.13.2 Declarations Completing Non-Defining Declarations 


Debugging information entries that represent a declaration that completes another (earlier) non-
defining declaration, may have a DW_AT_specification attribute whose value is a reference to 
the debugging information entry representing the non-defining declaration. Debugging 
information entries with a DW_AT_specification attribute do not need to duplicate information 
provided by the debugging information entry referenced by that specification attribute.  


2.14 Declaration Coordinates 


It is sometimes useful in a debugger to be able to associate a declaration with its occurrence in 
the program source.  


Any debugging information entry representing the declaration of an object, module, subprogram 
or type may have DW_AT_decl_file, DW_AT_decl_line and DW_AT_decl_column attributes 
each of whose value is an unsigned integer constant.  


The value of the DW_AT_decl_file attribute corresponds to a file number from the line number 
information table for the compilation unit containing the debugging information entry and 
represents the source file in which the declaration appeared (see Section 6.2). The value 0 
indicates that no source file has been specified.  


The value of the DW_AT_decl_line attribute represents the source line number at which the first 
character of the identifier of the declared object appears. The value 0 indicates that no source line 
has been specified.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 32  December 20, 2005 


The value of the DW_AT_decl_column attribute represents the source column number at which 
the first character of the identifier of the declared object appears. The value 0 indicates that no 
column has been specified.  


2.15 Identifier Names 


Any debugging information entry representing a program entity that has been given a name may 
have a DW_AT_name attribute, whose value is a string representing the name as it appears in the 
source program. A debugging information entry containing no name attribute, or containing a 
name attribute whose value consists of a name containing a single null byte, represents a 
program entity for which no name was given in the source.  


Because the names of program objects described by DWARF are the names as they appear in the 
source program, implementations of language translators that use some form of mangled name 
(as do many implementations of C++) should use the unmangled form of the name in the 
DWARF DW_AT_name attribute, including the keyword operator (in names such as 
“operator +”), if present. Sequences of multiple whitespace characters may be compressed.  


2.16 Data Locations 


Any debugging information entry describing a data object, which includes variables, parameters, 
common blocks and the like, may have a DW_AT_location attribute, whose value is a location 
description (see Section 2.6).  


2.17 Code Addresses and Ranges 


Any debugging information entry describing an entity that has a machine code address or range 
of machine code addresses, which includes compilation units, module initialization, subroutines, 
ordinary blocks, try/catch blocks, labels and the like, may have 


• A DW_AT_low_pc attribute for a single address, 


• A DW_AT_low_pc and DW_AT_high_pc pair of attributes for a single contiguous range of 
addresses, or 


• A DW_AT_ranges attribute for a non-contiguous range of addresses. 


If an entity has no associated machine code, none of these attributes are specified. 


2.17.1 Single Address 


When there is a single address associated with an entity, such as a label or alternate entry point 
of a subprogram, the entry has a DW_AT_low_pc attribute whose value is the relocated address 
for the entity. 







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 33 


While the DW_AT_entry_pc attribute might also seem appropriate for this purpose, historically 
the DW_AT_low_pc attribute was used before the DW_AT_entry_pc was introduced (in DWARF 
Version 3). There is insufficient reason to change this. 


2.17.2 Contiguous Address Range 


When the set of addresses of a debugging information entry can be described as a single 
continguous range, the entry may have a DW_AT_low_pc and DW_AT_high_pc pair of 
attributes. The value of the DW_AT_low_pc attribute is the relocated address of the first 
instruction associated with the entity, and the value of the DW_AT_high_pc is the relocated 
address of the first location past the last instruction associated with the entity. 


The high PC value may be beyond the last valid instruction in the executable. 


The presence of low and high PC attributes for an entity implies that the code generated for the 
entity is contiguous and exists totally within the boundaries specified by those two attributes. If 
that is not the case, no low and high PC attributes should be produced. 


2.17.3 Non-Contiguous Address Ranges 


When the set of addresses of a debugging information entry cannot be described as a single 
contiguous range, the entry has a DW_AT_ranges attribute whose value is of class rangelistptr 
and indicates the beginning of a range list. 


Range lists are contained in a separate object file section called .debug_ranges. A range list is 
indicated by a DW_AT_ranges attribute whose value is represented as an offset from the 
beginning of the .debug_ranges section to the beginning of the range list.  


Each entry in a range list is either a range list entry, a base address selection entry, or an end of 
list entry. 


A range list entry consists of: 


1. A beginning address offset. This address offset has the size of an address and is relative to 
the applicable base address of the compilation unit referencing this range list. It marks the 
beginning of an address range. 


2. An ending address offset. This address offset again has the size of an address and is relative 
to the applicable base address of the compilation unit referencing this range list. It marks the 
first address past the end of the address range.The ending address must be greater than or 
equal to the beginning address. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 34  December 20, 2005 


A range list entry (but not a base address selection or end of list entry) whose beginning and 
ending addresses are equal has no effect because the size of the range covered by such an 
entry is zero. 


The applicable base address of a range list entry is determined by the closest preceding base 
address selection entry (see below) in the same range list. If there is no such selection entry, then 
the applicable base address defaults to the base address of the compilation unit (see Section 3.1). 


In the case of a compilation unit where all of the machine code is contained in a single 
contiguous section, no base address selection entry is needed.  


Address range entries in a range list may not overlap. There is no requirement that the entries be 
ordered in any particular way. 


A base address selection entry consists of:  


1. The value of the largest representable address offset (for example, 0xffffffff when the size of 
an address is 32 bits). 


2. An address, which defines the appropriate base address for use in interpreting the beginning 
and ending address offsets of subsequent entries of the location list. 


A base address selection entry affects only the list in which it is contained.  


The end of any given range list is marked by an end of list entry, which consists of a 0 for the 
beginning address offset and a 0 for the ending address offset. A range list containing only an 
end of list entry describes an empty scope (which contains no instructions). 


A base address selection entry and an end of list entry for a range list are identical to a base 
address selection entry and end of list entry, respectively, for a location list (see Section 2.6.6) in 
interpretation and representation. 


2.18 Entry Address 


The entry or first executable instruction generated for an entity, if applicable, is often the lowest 
addressed instruction of a contiguous range of instructions. In other cases, the entry address 
needs to be specified explicitly. 


Any debugging information entry describing an entity that has a range of code addresses, which 
includes compilation units, module initialization, subroutines, ordinary blocks, try/catch blocks, 
and the like, may have a DW_entry_pc attribute to indicate the first executable instruction within 
that range of addresses. The value of the DW_AT_entry_pc attribute is a relocated address. If no 
DW_AT_entry_pc attribute is present, then the entry address is assumed to be the same as the 
value of the DW_AT_low_pc attribute, if present; otherwise, the entry address is unknown. 







 GENERAL DESCRIPTION 
 
 


 
 
December 20, 2005  Page 35 


2.19 Static and Dynamic Properties of Types 


Some attributes that apply to types specify a property (such as the lower bound of an array) that 
is an integer value, where the value may be known during compilation or may be computed 
dynamically during execution. The value of these attributes is determined based on the class as 
follows: 


• For a constant, the value of the constant is the value of the attribute. 


• For a reference, the value is a reference to another entity whose value is the value of the 
attribute. 


• For a block, the value is interpreted as a DWARF expression; evaluation of the expression 
yields the value of the attribute. 


Whether an attribute value can be dynamic depends on the rules of the applicable programming 
language. 


The applicable attributes include: DW_AT_allocated, DW_AT_associated, DW_AT_bit_offset, 
DW_AT_bit_size, DW_AT_byte_size, DW_AT_count, DW_AT_lower_bound, 
DW_AT_byte_stride, DW_AT_bit_stride, DW_AT_upper_bound (and possibly others). 


2.20 Entity Descriptions 


Some debug information entries may describe entities in the program that are artificial, or which 
otherwise are “named” in ways which are not valid identifiers in the programming language. 
For example, several languages may capture or freeze the value of a variable at a particular 
point in the program. Ada 95 has package elaboration routines, type descriptions of the form 
typename’Class, and “access typename” parameters.  


Generally, any debug information entry that has, or may have, a DW_AT_name attribute, may 
also have a DW_AT_description attribute whose value is a null-terminated string representing 
the description of the entity. 


It is expected that a debugger will only display these descriptions as part of the description of 
other entities. It should not accept them in expressions, nor allow them to be assigned, or the 
like. 


 


 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 36  December 20, 2005 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 37  December 20, 2005 


3 PROGRAM SCOPE ENTRIES 
This section describes debugging information entries that relate to different levels of program 
scope: compilation, module, subprogram, and so on. These entries may be thought of as bounded 
by ranges of text addresses within the program.  


3.1 Compilation and Importing Entries 


An object file may contain one or more compilation units, of which there are two kinds: normal 
compilation units and partial compilation units. A partial compilation unit is related to one or 
more other compilation units that import it.  


3.1.1 Normal and Partial Compilation Unit Entries 


A normal compilation unit is represented by a debugging information entry with the tag 
DW_TAG_compile_unit. A partial compilation unit is represented by a debugging information 
entry with the tag DW_TAG_partial_unit. 


In a simple normal compilation, a single compilation unit with the tag DW_TAG_compile_unit 
represents a complete object file and the tag DW_TAG_partial_unit is not used. In a compilation 
employing DWARF space compression and duplicate elimination techniques (see Appendix E), 
multiple compilation units using the tags DW_TAG_compile_unit and/or DW_TAG_partial_unit 
are used to represent portions of an object file.  


A normal compilation unit typically represents the text and data contributed to an executable by 
a single relocatable object file. It may be derived from several source files, including pre-
processed “include files.” A partial compilation unit typically represents a part of the text and 
data of a relocatable object file, in a manner that can potentially be shared with the results of 
other compilations to save space. It may be derived from an “include file”, template 
instantiation, or other implementation-dependent portion of a compilation. A normal compilation 
unit can also function in a manner similar to a partial compilation unit in some cases. 


A compilation unit entry owns debugging information entries that represent all or part of the 
declarations made in the corresponding compilation. In the case of a partial compilation unit, the 
containing scope of its owned declarations is indicated by imported unit entries in one or more 
other compilation unit entries that refer to that partial compilation unit (see Section 3.1.2). 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 38  December 20, 2005 


Compilation unit entries may have the following attributes:  


1. Either a DW_AT_low_pc and DW_AT_high_pc pair of attributes or a DW_AT_ranges 
attribute whose values encode the contiguous or non-contiguous address ranges, respectively, 
of the machine instructions generated for the compilation unit (see Section 2.17). 


A DW_AT_low_pc attribute may also be specified in combination with DW_AT_ranges to 
specify the default base address for use in location lists (see Section 2.6.6) and range lists 
(see Section 2.17.3). 


2. A DW_AT_name attribute whose value is a null-terminated string containing the full or 
relative path name of the primary source file from which the compilation unit was derived.  


3. A DW_AT_language attribute whose constant value is an integer code indicating the source 
language of the compilation unit. The set of language names and their meanings are given in 
Figure 8. 
 


Language Name Meaning 


DW_LANG_Ada83 † ISO Ada:1983 


DW_LANG_Ada95 † ISO Ada:1995 


DW_LANG_C Non-standardized C, such as K&R 


DW_LANG_C89 ISO C:1989 


DW_LANG_C99 ISO C:1999 


DW_LANG_C_plus_plus ISO C++:1998 


DW_LANG_Cobol74 † ISO Cobol:1974 


DW_LANG_Cobol85 † ISO Cobol:1985 


DW_LANG_D † D 


DW_LANG_Fortran77 ISO FORTRAN 77 


DW_LANG_Fortran90 ISO Fortran 90 







 PROGRAM SCOPE ENTRIES 
 
 


 
 
December 20, 2005  Page 39 


Language Name Meaning 


DW_LANG_Fortran95 ISO Fortran 95 


DW_LANG_Java Java 


DW_LANG_Modula2 ISO Modula-2:1996 


DW_LANG_ObjC Objective-C 


DW_LANG_ObjC_plus_plus Objective-C++ 


DW_LANG_Pascal83 ISO Pascal:1983 


DW_LANG_PLI † ANSI PL/I:1976 


DW_LANG_UPC Unified Parallel C 


† Support for these languages is limited. 


Figure 8. Language names 


 


4. A DW_AT_stmt_list attribute whose value is a section offset to the line number information 
for this compilation unit. 


This information is placed in a separate object file section from the debugging information 
entries themselves. The value of the statement list attribute is the offset in the .debug_line 
section of the first byte of the line number information for this compilation unit (see 
Section 6.2).  


5. A DW_AT_macro_info attribute whose value is a section offset to the macro information for 
this compilation unit.  


This information is placed in a separate object file section from the debugging information 
entries themselves. The value of the macro information attribute is the offset in the 
.debug_macinfo section of the first byte of the macro information for this compilation unit 
(see Section 6.3).  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 40  December 20, 2005 


6. A DW_AT_comp_dir attribute whose value is a null-terminated string containing the current 
working directory of the compilation command that produced this compilation unit in 
whatever form makes sense for the host system.  


The suggested form for the value of the DW_AT_comp_dir attribute on UNIX systems is 
“hostname:pathname”. If no hostname is available, the suggested form is “:pathname”.  


7. A DW_AT_producer attribute whose value is a null-terminated string containing information 
about the compiler that produced the compilation unit. The actual contents of the string will 
be specific to each producer, but should begin with the name of the compiler vendor or some 
other identifying character sequence that should avoid confusion with other producer values.  


8. A DW_AT_identifier_case attribute whose integer constant value is a code describing the 
treatment of identifiers within this compilation unit. The set of identifier case codes is given 
in Figure 9. 
  


DW_ID_case_sensitive 


DW_ID_up_case 


DW_ID_down_case 


DW_ID_case_insensitive 


Figure 9. Identifier case codes 


DW_ID_case_sensitive is the default for all compilation units that do not have this attribute. 
It indicates that names given as the values of DW_AT_name attributes in debugging 
information entries for the compilation unit reflect the names as they appear in the source 
program. The debugger should be sensitive to the case of identifier names when doing 
identifier lookups.  


DW_ID_up_case means that the producer of the debugging information for this compilation 
unit converted all source names to upper case. The values of the name attributes may not 
reflect the names as they appear in the source program. The debugger should convert all 
names to upper case when doing lookups.  


DW_ID_down_case means that the producer of the debugging information for this 
compilation unit converted all source names to lower case. The values of the name attributes 
may not reflect the names as they appear in the source program. The debugger should convert 
all names to lower case when doing lookups.  







 PROGRAM SCOPE ENTRIES 
 
 


 
 
December 20, 2005  Page 41 


DW_ID_case_insensitive means that the values of the name attributes reflect the names as 
they appear in the source program but that a case insensitive lookup should be used to access 
those names.  


9. A DW_AT_base_types attribute whose value is a reference.  


This attribute points to a debugging information entry representing another compilation unit. 
It may be used to specify the compilation unit containing the base type entries used by entries 
in the current compilation unit (see Section 5.1).  


This attribute provides a consumer a way to find the definition of base types for a 
compilation unit that does not itself contain such definitions. This allows a consumer, for 
example, to interpret a type conversion to a base type correctly.  


10. A DW_AT_use_UTF8 attribute, which is a flag whose presence indicates that all strings 
(such as the names of declared entities in the source program) are represented using the 
UTF-8 representation (see Section 7.5.4). 


The base address of a compilation unit is defined as the value of the DW_AT_low_pc attribute, 
if present; otherwise, it is undefined. If the base address is undefined, then any DWARF entry or 
structure defined in terms of the base address of that compilation unit is not valid. 


3.1.2 Imported Unit Entries 


An imported unit entry is represented by a debugging information entry with the tag 
DW_TAG_imported_unit. An imported unit entry contains a DW_AT_import attribute whose 
value is a reference to the normal or partial compilation unit unit whose declarations logically 
belong at the place of the imported unit entry. 


An imported unit entry does not necessarily correspond to any entity or construct in the source 
program. It is merely “glue” used to relate a partial unit, or a compilation unit used as a partial 
unit, to a place in some other compilation unit. 


3.2 Module, Namespace and Importing Entries 


Modules and namespaces provide a means to collect related entities into a single entity and to 
manage the names of those entities. 


3.2.1 Module Entries 


Several languages have the concept of a “module.”  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 42  December 20, 2005 


A module is represented by a debugging information entry with the tag DW_TAG_module. 
Module entries may own other debugging information entries describing program entities whose 
declaration scopes end at the end of the module itself.  


If the module has a name, the module entry has a DW_AT_name attribute whose value is a null- 
terminated string containing the module name as it appears in the source program.  


The module entry may have either a DW_AT_low_pc and DW_AT_high_pc pair of attributes or 
a DW_AT_ranges attribute whose values encode the contiguous or non-contiguous address 
ranges, respectively, of the machine instructions generated for the module initialization code (see 
Section 2.17). It may also have a DW_AT_entry_pc attribute whose value is the address of the 
first executable instruction of that initialization code (see Section 2.18). 


If the module has been assigned a priority, it may have a DW_AT_priority attribute. The value of 
this attribute is a reference to another debugging information entry describing a variable with a 
constant value. The value of this variable is the actual constant value of the module’s priority, 
represented as it would be on the target architecture.  


A Modula2 definition module may be represented by a module entry containing a declaration 
attribute (DW_AT_declaration). A Fortran 90 module may also be represented by a module 
entry (but no declaration attribute is warranted because Fortran has no concept of a 
corresponding module body). 


3.2.2 Namespace Entries 


C++ has the notion of a namespace, which provides a way to implement name hiding, so that 
names of unrelated things do not accidentally clash in the global namespace when an 
application is linked together.  


A namespace is represented by a debugging information entry with the tag 
DW_TAG_namespace. A namespace extension is represented by a DW_TAG_namespace entry 
with a DW_AT_extension attribute referring to the previous extension, or if there is no previous 
extension, to the original DW_TAG_namespace entry. A namespace extension entry does not 
need to duplicate information in a previous extension entry of the namespace nor need it 
duplicate information in the original namespace entry. (Thus, for a namespace with a name, a 
DW_AT_name attribute need only be attached directly to the original DW_TAG_namespace 
entry.)  


Namespace and namespace extension entries may own other debugging information entries 
describing program entities whose declaration scopes end at the end of the namespace itself. 


For C++, such owned program entities may be declarations, including certain declarations that 
are also object or function definitions. 







 PROGRAM SCOPE ENTRIES 
 
 


 
 
December 20, 2005  Page 43 


If a type, variable, or function declared in a namespace is defined outside of the body of the 
namespace declaration, that type, variable, or function definition entry has a 
DW_AT_specification attribute whose value is a reference to the debugging information entry 
representing the declaration of the type, variable or function. Type, variable, or function entries 
with a DW_AT_specification attribute do not need to duplicate information provided by the 
declaration entry referenced by the specification attribute.  


The C++ global namespace (the namespace referred to by "::f", for example) is not explicitly 
represented in DWARF with a namespace entry (thus mirroring the situation in C++ source). 
Global items may be simply declared with no reference to a namespace.  


The C++ compilation unit specific "unnamed namespace" may be represented by a namespace 
entry with no name attribute in the original namespace declaration entry (and therefore no name 
attribute in any namespace extension entry of this namespace).  


A compiler emitting namespace information may choose to explicitly represent namespace 
extensions, or to represent the final namespace declaration of a compilation unit; this is a 
quality-of-implementation issue and no specific requirements are given here. If only the final 
namespace is represented, it is impossible for a debugger to interpret using declaration 
references in exactly the manner defined by the C++ language.  


Emitting all namespace declaration information in all compilation units can result in a 
significant increase in the size of the debug information and significant duplication of 
information across compilation units. The C++ namespace std, for example, is large and will 
probably be referenced in every C++ compilation unit.  


For a C++ namespace example, see Appendix D.3. 


3.2.3 Imported (or Renamed) Declaration Entries 


Some languages support the concept of importing into or making accessible in a given unit 
declarations made in a different module. An imported declaration may sometimes be given 
another name. 


An imported declaration is represented by one or more debugging information entries with the 
tag DW_TAG_imported_declaration. When an overloaded entity is imported, there is one 
imported declaration entry for each overloading. Each imported declaration entry has a 
DW_AT_import attribute, whose value is a reference to the debugging information entry 
representing the declaration that is being imported.  


An imported declaration may also have a DW_AT_name attribute whose value is a null-
terminated string containing the name, as it appears in the source program, by which the 
imported entity is to be known in the context of the imported declaration entry (which may be 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 44  December 20, 2005 


different than the name of the entity being imported). If no name is present, then the name by 
which the entity is to be known is the same as the name of the entity being imported. 


An imported declaration entry with a name attribute may be used as a general means to rename 
or provide an alias for an entity, regardless of the context in which the importing declaration or 
the imported entity occur. 


A C++ namespace alias may be represented by an imported declaration entry with a name 
attribute whose value is a null-terminated string containing the alias name as it appears in the 
source program and an import attribute whose value is a reference to the applicable original 
namespace or namespace extension entry.  


A C++ using declaration may be represented by one or more imported declaration entries. 
When the using declaration refers to an overloaded function, there is one imported declaration 
entry corresponding to each overloading. Each imported declaration entry has no name attribute 
but it does have an import attribute that refers to the entry for the entity being imported. (C++ 
provides no means to “rename” an imported entity, other than a namespace).  


A Fortran use statement with an “only list” may be represented by a series of imported 
declaration entries, one (or more) for each entity that is imported. An entity that is renamed in 
the importing context may be represented by an imported declaration entry with a name attribute 
that specifies the new local name. 


3.2.4 Imported Module Entries 


Some languages support the concept of importing into or making accessible in a given unit all of 
the declarations contained within a separate module or namespace.  


An imported module declaration is represented by a debugging information entry with the tag 
DW_TAG_imported_module. An imported module entry contains a DW_AT_import attribute 
whose value is a reference to the module or namespace entry containing the definition and/or 
declaration entries for the entities that are to be imported into the context of the imported module 
entry. 


An imported module declaration may own a set of imported declaration entries, each of which 
refers to an entry in the module whose corresponding entity is to be known in the context of the 
imported module declaration by a name other than its name in that module. Any entity in the 
module that is not referenced in this way is known in the context of the imported module entry 
by the same name as it is declared in the module. 


A C++ using directive may be represented by an imported module entry, with an import 
attribute referring to the namespace entry of the appropriate extension of the namespace (which 
might be the original namespace entry), no name attribute and no owned entries.  







 PROGRAM SCOPE ENTRIES 
 
 


 
 
December 20, 2005  Page 45 


A Fortran use statement with a “rename list” may be represented by an imported module entry 
with an import attribute referring to the module, no name attribute and owned entries 
corresponding to those entities that are renamed as part of being imported. 


A Fortran use statement with neither a “rename list” nor an “only list” may be represented by 
an imported module entry with an import attribute referring to the module, no name attribute 
and no owned child entries. 


A Fortran use statement for an entity in a module that is itself imported by a use statement 
without an explicit mention may be represented by an imported declaration entry that refers to 
the original debugging information entry. For example, given  
        module A 
        integer X, Y, Z 
        end module 
 
        module B 
        use A 
        end module 
 
        module C 
        use B, only Q => X 
        end module 
 


the imported declaration entry for Q within module C refers directly to the variable declaration 
entry for A in module A because there is no explicit representation for X in module B. 


A similar situation arises for a C++ using declaration that imports an entity in terms of a 
namespace alias. See Appendix D.3 for an example.  


3.3 Subroutine and Entry Point Entries 


The following tags exist to describe debugging information entries for subroutines and entry 
points:  


DW_TAG_subprogram A global or file static subroutine or function. 


DW_TAG_inlined_subroutine A particular inlined instance of a subroutine or function. 


DW_TAG_entry_point A Fortran alternate entry point. 


3.3.1 General Subroutine and Entry Point Information 


The subroutine or entry point entry has a DW_AT_name attribute whose value is a null-
terminated string containing the subroutine or entry point name as it appears in the source 
program.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 46  December 20, 2005 


If the name of the subroutine described by an entry with the tag DW_TAG_subprogram is visible 
outside of its containing compilation unit, that entry has a DW_AT_external attribute, whose 
value is a flag.  


Additional attributes for functions that are members of a class or structure are described in 
Section 5.6.7.  


A common debugger feature is to allow the debugger user to call a subroutine within the subject 
program. In certain cases, however, the generated code for a subroutine will not obey the 
standard calling conventions for the target architecture and will therefore not be safe to call 
from within a debugger.  


A subroutine entry may contain a DW_AT_calling_convention attribute, whose value is an 
integer constant. The set of calling convention codes is given in Figure 10. 
 


DW_CC_normal 


DW_CC_program 


DW_CC_nocall 


Figure 10. Calling convention codes 


If this attribute is not present, or its value is the constant DW_CC_normal, then the subroutine 
may be safely called by obeying the “standard” calling conventions of the target architecture. If 
the value of the calling convention attribute is the constant DW_CC_nocall, the subroutine does 
not obey standard calling conventions, and it may not be safe for the debugger to call this 
subroutine.  


If the semantics of the language of the compilation unit containing the subroutine entry 
distinguishes between ordinary subroutines and subroutines that can serve as the “main 
program,” that is, subroutines that cannot be called directly according to the ordinary calling 
conventions, then the debugging information entry for such a subroutine may have a calling 
convention attribute whose value is the constant DW_CC_program.  


The DW_CC_program value is intended to support Fortran main programs. It is not intended as 
a way of finding the entry address for the program. 


A subprogram may have a DW_AT_elemental attribute, whose value is a flag. The attribute 
indicates whether the subroutine or entry point was declared with the “elemental” keyword or 
property. 







 PROGRAM SCOPE ENTRIES 
 
 


 
 
December 20, 2005  Page 47 


A subprogram entry may have a DW_AT_pure attribute, whose value is a flag. The attribute 
indicates whether the subroutine was declared with the “pure” keyword or property. 


A subprogram entry may have a DW_AT_recursive attribute, whose value is a flag. The attribute 
indicates whether the subroutine or entry point was declared with the “recursive” keyword or 
property. 


The Fortran language allows the keywords elemental, pure and recursive to be included as 
part of the declaration of a subroutine; these attributes reflect that usage. These attributes are 
not relevant for languages that do not support similar keywords or syntax. In particular, the 
DW_AT_recursive attribute is neither needed nor appropriate in languages such as C where 
functions support recursion by default. 


3.3.2 Subroutine and Entry Point Return Types 


If the subroutine or entry point is a function that returns a value, then its debugging information 
entry has a DW_AT_type attribute to denote the type returned by that function.  


Debugging information entries for C void functions should not have an attribute for the return 
type.  


In C there is a difference between the types of functions declared using function prototype style 
declarations and those declared using non-prototype declarations.  


A subroutine entry declared with a function prototype style declaration may have a 
DW_AT_prototyped attribute whose value is a flag.  


3.3.3 Subroutine and Entry Point Locations 


A subroutine entry may have either a DW_AT_low_pc and DW_AT_high_pc pair of attributes 
or a DW_AT_ranges attribute whose values encode the contiguous or non-contiguous address 
ranges, respectively, of the machine instructions generated for the subroutine (see Section 2.17). 


A subroutine entry may also have a DW_AT_entry_pc attribute whose value is the address of the 
first executable instruction of the subroutine (see Section 2.18).  


An entry point has a DW_AT_low_pc attribute whose value is the relocated address of the first 
machine instruction generated for the entry point.  


While the DW_AT_entry_pc attribute might also seem appropriate for this purpose, historically 
the DW_AT_low_pc attribute was used before the DW_AT_entry_pc was introduced (in DWARF 
Version 3). There is insufficient reason to change this. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 48  December 20, 2005 


Subroutines and entry points may also have DW_AT_segment and DW_AT_address_class 
attributes, as appropriate, to specify which segments the code for the subroutine resides in and 
the addressing mode to be used in calling that subroutine.  


A subroutine entry representing a subroutine declaration that is not also a definition does not 
have code address or range attributes.  


3.3.4 Declarations Owned by Subroutines and Entry Points 


The declarations enclosed by a subroutine or entry point are represented by debugging 
information entries that are owned by the subroutine or entry point entry. Entries representing the 
formal parameters of the subroutine or entry point appear in the same order as the corresponding 
declarations in the source program.  


There is no ordering requirement for entries for declarations that are children of subroutine or 
entry point entries but that do not represent formal parameters. The formal parameter entries 
may be interspersed with other entries used by formal parameter entries, such as type entries.  


The unspecified parameters of a variable parameter list are represented by a debugging 
information entry with the tag DW_TAG_unspecified_parameters.  


The entry for a subroutine that includes a Fortran common block has a child entry with the tag 
DW_TAG_common_inclusion. The common inclusion entry has a DW_AT_common_reference 
attribute whose value is a reference to the debugging entry for the common block being included 
(see Section 4.2).  


3.3.5 Low-Level Information 


A subroutine or entry point entry may have a DW_AT_return_addr attribute, whose value is a 
location description. The location calculated is the place where the return address for the 
subroutine or entry point is stored.  


A subroutine or entry point entry may also have a DW_AT_frame_base attribute, whose value is 
a location description that computes the “frame base” for the subroutine or entry point. If the 
location description is a register operation, the given register contains the frame base address. If 
the location description is a DWARF expression, the result of evaluating that expression is the 
frame base address. Finally, for a location list, this interpretation applies to each location 
expression contained in the list of location list entries. 







 PROGRAM SCOPE ENTRIES 
 
 


 
 
December 20, 2005  Page 49 


The frame base for a procedure is typically an address fixed relative to the first unit of storage 
allocated for the procedure’s stack frame. The DW_AT_frame_base attribute can be used in 
several ways:  


1. In procedures that need location lists to locate local variables, the DW_AT_frame_base can 
hold the needed location list, while all variables’ location descriptions can be simpler 
location expressions involving the frame base.  


2. It can be used as a key in resolving “up-level” addressing with nested routines. (See 
DW_AT_static_link, below)  


Some languages support nested subroutines. In such languages, it is possible to reference the 
local variables of an outer subroutine from within an inner subroutine. The DW_AT_static_link 
and DW_AT_frame_base attributes allow debuggers to support this same kind of referencing.  


If a subroutine or entry point is nested, it may have a DW_AT_static_link attribute, whose value 
is a location description that computes the frame base of the relevant instance of the subroutine 
that immediately encloses the subroutine or entry point.  


In the context of supporting nested subroutines, the DW_AT_frame_base attribute value should 
obey the following constraints:  


1. It should compute a value that does not change during the life of the procedure, and  


2. The computed value should be unique among instances of the same subroutine. (For typical 
DW_AT_frame_base use, this means that a recursive subroutine’s stack frame must have 
non-zero size.)  


If a debugger is attempting to resolve an up-level reference to a variable, it uses the nesting 
structure of DWARF to determine which subroutine is the lexical parent and the 
DW_AT_static_link value to identify the appropriate active frame of the parent. It can then 
attempt to find the reference within the context of the parent.  


3.3.6 Types Thrown by Exceptions 


In C++ a subroutine may declare a set of types which it may validly throw.  


If a subroutine explicitly declares that it may throw an exception for one or more types, each 
such type is represented by a debugging information entry with the tag DW_TAG_thrown_type. 
Each such entry is a child of the entry representing the subroutine that may throw this type. All 
thrown type entries should follow all entries representing the formal parameters of the subroutine 
and precede all entries representing the local variables or lexical blocks contained in the 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 50  December 20, 2005 


subroutine. Each thrown type entry contains a DW_AT_type attribute, whose value is a reference 
to an entry describing the type of the exception that may be thrown.  


3.3.7 Function Template Instantiations 


In C++, a function template is a generic definition of a function that is instantiated differently 
when called with values of different types. DWARF does not represent the generic template 
definition, but does represent each instantiation.  


A template instantiation is represented by a debugging information entry with the tag 
DW_TAG_subprogram. With three exceptions, such an entry will contain the same attributes 
and will have the same types of child entries as would an entry for a subroutine defined explicitly 
using the instantiation types. The exceptions are:  


1. Each formal parameterized type declaration appearing in the template definition is 
represented by a debugging information entry with the tag 
DW_TAG_template_type_parameter. Each such entry has a DW_AT_name attribute, whose 
value is a null-terminated string containing the name of the formal type parameter as it 
appears in the source program. The template type parameter entry also has a DW_AT_type 
attribute describing the actual type by which the formal is replaced for this instantiation. All 
template type parameter entries should appear before the entries describing the instantiated 
formal parameters to the function.  


2. If the compiler has generated a special compilation unit to hold the template instantiation and 
that compilation unit has a different name from the compilation unit containing the template 
definition, the name attribute for the debugging entry representing that compilation unit 
should be empty or omitted.  


3. If the subprogram entry representing the template instantiation or any of its child entries 
contain declaration coordinate attributes, those attributes should refer to the source for the 
template definition, not to any source generated artificially by the compiler for this 
instantiation.  


3.3.8 Inline Subroutines 


A declaration or a definition of an inlinable subroutine is represented by a debugging information 
entry with the tag DW_TAG_subprogram. The entry for a subroutine that is explicitly declared 
to be available for inline expansion or that was expanded inline implicitly by the compiler has a 
DW_AT_inline attribute whose value is an integer constant. The set of values for the 
DW_AT_inline attribute is given in Figure 11.  


 







 PROGRAM SCOPE ENTRIES 
 
 


 
 
December 20, 2005  Page 51 


Name Meaning  


DW_INL_not_inlined Not declared inline nor inlined by the compiler 


DW_INL_inlined Not declared inline but inlined by the compiler 


DW_INL_declared_not_inlined Declared inline but not inlined by the compiler 


DW_INL_declared_inlined Declared inline and inlined by the compiler  


Figure 11. Inline codes 


3.3.8.1 Abstract Instances 


Any debugging information entry that is owned (either directly or indirectly) by a debugging 
information entry that contains the DW_AT_inline attribute is referred to as an “abstract instance 
entry.” Any subroutine entry that contains a DW_AT_inline attribute is known as an “abstract 
instance root.” Any set of abstract instance entries that are all children (either directly or 
indirectly) of some abstract instance root, together with the root itself, is known as an “abstract 
instance tree.” However, in the case where an abstract instance tree is nested within another 
abstract instance tree, the entries in the nested abstract instance tree are not considered to be 
entries in the outer abstract instance tree. 


Abstract instance trees are defined so that no entry is part of more than one abstract instance 
tree. This simplifies the following descriptions. 


A debugging information entry that is a member of an abstract instance tree should not contain 
any attributes which describe aspects of the subroutine which vary between distinct inline 
expansions or distinct out-of-line expansions. For example, the DW_AT_low_pc, 
DW_AT_high_pc, DW_AT_ranges, DW_AT_entry_pc, DW_AT_location, 
DW_AT_return_addr, DW_AT_start_scope, and DW_AT_segment attributes typically should 
be omitted; however, this list is not exhaustive.  


It would not make sense normally to put these attributes into abstract instance entries since such 
entries do not represent actual (concrete) instances and thus do not actually exist at run-time. 
However, see Appendix D.7.3 for a contrary example. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 52  December 20, 2005 


The rules for the relative location of entries belonging to abstract instance trees are exactly the 
same as for other similar types of entries that are not abstract. Specifically, the rule that requires 
that an entry representing a declaration be a direct child of the entry representing the scope of the 
declaration applies equally to both abstract and non-abstract entries. Also, the ordering rules for 
formal parameter entries, member entries, and so on, all apply regardless of whether or not a 
given entry is abstract.  


3.3.8.2 Concrete Inlined Instances 


Each inline expansion of an inlinable subroutine is represented by a debugging information entry 
with the tag DW_TAG_inlined_subroutine. Each such entry should be a direct child of the entry 
that represents the scope within which the inlining occurs.  


Each inlined subroutine entry may have either a DW_AT_low_pc and DW_AT_high_pc pair of 
attributes or a DW_AT_ranges attribute whose values encode the contiguous or non-contiguous 
address ranges, respectively, of the machine instructions generated for the inlined subroutine (see 
Section 2.17). An inlined subroutine entry may also contain a DW_AT_entry_pc attribute, 
representing the first executable instruction of the inline expansion (see Section 2.18).  


An inlined subroutine entry may also have DW_AT_call_file, DW_AT_call_line and 
DW_AT_call_column attributes, each of whose value is an integer constant. These attributes 
represent the source file, source line number, and source column number, respectively, of the 
first character of the statement or expression that caused the inline expansion. The call file, call 
line, and call column attributes are interpreted in the same way as the declaration file, declaration 
line, and declaration column attributes, respectively (see Section 2.14).  


The call file, call line and call column coordinates do not describe the coordinates of the 
subroutine declaration that was inlined, rather they describe the coordinates of the call.  


Any debugging information entry that is owned (either directly or indirectly) by a debugging 
information entry with the tag DW_TAG_inlined_subroutine is referred to as a “concrete inlined 
instance entry.” Any entry that has the tag DW_TAG_inlined_subroutine is known as a 
“concrete inlined instance root.” Any set of concrete inlined instance entries that are all children 
(either directly or indirectly) of some concrete inlined instance root, together with the root itself, 
is known as a “concrete inlined instance tree.” However, in the case where a concrete instance 
tree is nested within another concrete instance tree, the entries in the nested concrete instance 
tree are not considered to be entries in the outer concrete instance tree. 


Concrete inline instance trees are defined so that no entry is part of more than one concrete 
inline instance tree. This simplifies later descriptions. 


Each concrete inlined instance tree is uniquely associated with one (and only one) abstract 
instance tree.  







 PROGRAM SCOPE ENTRIES 
 
 


 
 
December 20, 2005  Page 53 


Note, however, that the reverse is not true. Any given abstract instance tree may be associated 
with several different concrete inlined instance trees, or may even be associated with zero 
concrete inlined instance trees.  


Concrete inlined instance entries may omit attributes that are not specific to the concrete instance 
(but present in the abstract instance) and need include only attributes that are specific to the 
concrete instance (but omitted in the abstract instance). In place of these omitted attributes, each 
concrete inlined instance entry has a DW_AT_abstract_origin attribute that may be used to 
obtain the missing information (indirectly) from the associated abstract instance entry. The value 
of the abstract origin attribute is a reference to the associated abstract instance entry.  


If an entry within a concrete inlined instance tree contains attributes describing the declaration 
coordinates of that entry, then those attributes should refer to the file, line and column of the 
original declaration of the subroutine, not to the point at which it was inlined. As a consequence, 
they may usually be omitted from any entry that has an abstract origin attribute. 


For each pair of entries that are associated via a DW_AT_abstract_origin attribute, both 
members of the pair will have the same tag. So, for example, an entry with the tag 
DW_TAG_variable can only be associated with another entry that also has the tag 
DW_TAG_variable. The only exception to this rule is that the root of a concrete instance tree 
(which must always have the tag DW_TAG_inlined_subroutine) can only be associated with the 
root of its associated abstract instance tree (which must have the tag DW_TAG_subprogram).  


In general, the structure and content of any given concrete inline instance tree will be closely 
analogous to the structure and content of its associated abstract instance tree. There are a few 
exceptions:  


1. An entry in the concrete instance tree may be omitted if it contains only a 
DW_AT_abstract_origin attribute and either has no children, or its children are omitted. Such 
entries would provide no useful information. In C-like languages, such entries frequently 
include types, including structure, union, class, and interface types; and members of types. If 
any entry within a concrete inlined instance tree needs to refer to an entity declared within 
the scope of the relevant inline subroutine and for which no concrete instance entry exists, 
the reference should refer to the abstract instance entry.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 54  December 20, 2005 


2. Entries in the concrete instance tree which are associated with entries in the abstract instance 
tree such that neither has a DW_AT_name attribute, and neither is referenced by any other 
debugging information entry, may be omitted. This may happen for debugging information 
entries in the abstract instance trees that became unnecessary in the concrete instance tree 
because of additional information available there. For example, an anonymous variable might 
have been created and described in the abstract instance tree, but because of the actual 
parameters for a particular inline expansion, it could be described as a constant value without 
the need for that separate debugging information entry.  


3. A concrete instance tree may contain entries which do not correspond to entries in the 
abstract instance tree to describe new entities that are specific to a particular inline 
expansion. In that case, they will not have associated entries in the abstract instance tree, 
should not contain DW_AT_abstract_origin attributes, and must contain all their own 
attributes directly. This allows an abstract instance tree to omit debugging information entries 
for anonymous entities that are unlikely to be needed in most inline expansions. In any 
expansion which deviates from that expectation, the entries can be described in its concrete 
instance tree. 


3.3.8.3 Out-of-Line Instances of Inline Subroutines 


Under some conditions, compilers may need to generate concrete executable instances of inline 
subroutines other than at points where those subroutines are actually called. Such concrete 
instances of inline subroutines are referred to as “concrete out-of-line instances.”  


In C++, for example, taking the address of a function declared to be inline can necessitate the 
generation of a concrete out-of-line instance of the given function.  


The DWARF representation of a concrete out-of-line instance of an inline subroutine is 
essentially the same as for a concrete inlined instance of that subroutine (as described in the 
preceding section). The representation of such a concrete out-of-line instance makes use of 
DW_AT_abstract_origin attributes in exactly the same way as they are used for a concrete 
inlined instance (that is, as references to corresponding entries within the associated abstract 
instance tree).  







 PROGRAM SCOPE ENTRIES 
 
 


 
 
December 20, 2005  Page 55 


The differences between the DWARF representation of a concrete out-of-line instance of a given 
subroutine and the representation of a concrete inlined instance of that same subroutine are as 
follows:  


1. The root entry for a concrete out-of-line instance of a given inline subroutine has the same 
tag as does its associated (abstract) inline subroutine entry (that is, it does not have the tag 
DW_TAG_inlined_subroutine).  


2. The root entry for a concrete out-of-line instance tree is normally owned by the same parent 
entry that also owns the root entry of the associated abstract instance. However, it is not 
required that the abstract and out-of-line instance trees be owned by the same parent entry.  


3.3.8.4 Nested Inline Subroutines 


Some languages and compilers may permit the logical nesting of a subroutine within another 
subroutine, and may permit either the outer or the nested subroutine, or both, to be inlined.  


For a non-inline subroutine nested within an inline subroutine, the nested subroutine is described 
normally in both the abstract and concrete inlined instance trees for the outer subroutine. All 
rules pertaining to the abstract and concrete instance trees for the outer subroutine apply also to 
the abstract and concrete instance entries for the nested subroutine.  


For an inline subroutine nested within another inlined subroutine, the following rules apply to 
their abstract and concrete instance trees:  


1. The abstract instance tree for the nested subroutine is described within the abstract instance 
tree for the outer subroutine according to the rules in Section 3.3.8.1, and without regard to 
the fact that it is within an outer abstract instance tree.  


2. Any abstract instance tree for a nested subroutine is always omitted within the concrete 
instance tree for an outer subroutine.  


3. A concrete instance tree for a nested subroutine is always omitted within the abstract instance 
tree for an outer subroutine.  


4. The concrete instance tree for any inline or out-of-line expansion of the nested subroutine is 
described within a concrete instance tree for the outer subroutine according to the rules in 
Sections 3.3.8.2 or 3.3.8.3, respectively, and without regard to the fact that it is within an 
outer concrete instance tree. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 56  December 20, 2005 


3.3.9 Trampolines 


A trampoline is a compiler-generated subroutine that serves as an intermediary in making a call 
to another subroutine. It may adjust parameters and/or the result (if any) as appropriate to the 
combined calling and called execution contexts.  


A trampoline is represented by a debugging information entry with the tag 
DW_TAG_subprogram or DW_TAG_inlined_subroutine that has a DW_AT_trampoline 
attribute. The value of that attribute indicates the target subroutine of the trampoline, that is, the 
subroutine to which the trampoline passes control. (A trampoline entry may but need not also 
have a DW_AT_artificial attribute.)  


The value of the trampoline attribute may be represented using any of the following forms, 
which are listed in order of preference:  


• If the value is of class reference, then the value specifies the debugging information entry of 
the target subprogram.  


• If the value is of class address, then the value is the relocated address of the target 
subprogram.  


• If the value is of class string, then the value is the (possibly mangled) name of the target 
subprogram. 


• If the value is of class flag, then the value true indicates that the containing subroutine is a 
trampoline but that the target subroutine is not known. 


The target subprogram may itself be a trampoline. (A sequence of trampolines necessarily ends 
with a non-trampoline subprogram.)  


In C++, trampolines may be used to implement derived virtual member functions; such 
trampolines typically adjust the implicit this pointer parameter in the course of passing control. 
Other languages and environments may use trampolines in a manner sometimes known as 
transfer functions or transfer vectors.  


Trampolines may sometimes pass control to the target subprogram using a branch or jump 
instruction instead of a call instruction, thereby leaving no trace of their existance in the 
subsequent execution context.  


This attribute helps make it feasible for a debugger to arrange that stepping into a trampoline or 
setting a breakpoint in a trampoline will result in stepping into or setting the breakpoint in the 
target subroutine instead. This helps to hide the compiler generated subprogram from the user.  







 PROGRAM SCOPE ENTRIES 
 
 


 
 
December 20, 2005  Page 57 


If the target subroutine is not known, a debugger may choose to repeatedly step until control 
arrives in a new subroutine which can be assumed to be the target subroutine. 


3.4 Lexical Block Entries 


A lexical block is a bracketed sequence of source statements that may contain any number of 
declarations. In some languages (including C and C++), blocks can be nested within other 
blocks to any depth.  


A lexical block is represented by a debugging information entry with the tag 
DW_TAG_lexical_block.  


The lexical block entry may have either a DW_AT_low_pc and DW_AT_high_pc pair of 
attributes or a DW_AT_ranges attribute whose values encode the contiguous or non-contiguous 
address ranges, respectively, of the machine instructions generated for the lexical block (see 
Section 2.17).  


If a name has been given to the lexical block in the source program, then the corresponding 
lexical block entry has a DW_AT_name attribute whose value is a null-terminated string 
containing the name of the lexical block as it appears in the source program.  


This is not the same as a C or C++ label (see below). 


The lexical block entry owns debugging information entries that describe the declarations within 
that lexical block. There is one such debugging information entry for each local declaration of an 
identifier or inner lexical block.  


3.5 Label Entries 


A label is a way of identifying a source statement. A labeled statement is usually the target of one 
or more “go to” statements.  


A label is represented by a debugging information entry with the tag DW_TAG_label. The entry 
for a label should be owned by the debugging information entry representing the scope within 
which the name of the label could be legally referenced within the source program. 


The label entry has a DW_AT_low_pc attribute whose value is the relocated address of the first 
machine instruction generated for the statement identified by the label in the source program. 
The label entry also has a DW_AT_name attribute whose value is a null-terminated string 
containing the name of the label as it appears in the source program.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 58  December 20, 2005 


3.6 With Statement Entries 


Both Pascal and Modula2 support the concept of a “with” statement. The with statement 
specifies a sequence of executable statements within which the fields of a record variable may be 
referenced, unqualified by the name of the record variable.  


A with statement is represented by a debugging information entry with the tag 
DW_TAG_with_stmt. 


A with statement entry may have either a DW_AT_low_pc and DW_AT_high_pc pair of 
attributes or a DW_AT_ranges attribute whose values encode the contiguous or non-contiguous 
address ranges, respectively, of the machine instructions generated for the with statement (see 
Section 2.17).  


The with statement entry has a DW_AT_type attribute, denoting the type of record whose fields 
may be referenced without full qualification within the body of the statement. It also has a 
DW_AT_location attribute, describing how to find the base address of the record object 
referenced within the body of the with statement.  


3.7 Try and Catch Block Entries 


In C++ a lexical block may be designated as a “catch block.” A catch block is an exception 
handler that handles exceptions thrown by an immediately preceding “try block.” A catch block 
designates the type of the exception that it can handle.  


A try block is represented by a debugging information entry with the tag DW_TAG_try_block. 
A catch block is represented by a debugging information entry with the tag 
DW_TAG_catch_block. 


Both try and catch block entries may have either a DW_AT_low_pc and DW_AT_high_pc pair 
of attributes or a DW_AT_ranges attribute whose values encode the contiguous or non-
contiguous address ranges, respectively, of the machine instructions generated for the block (see 
Section 2.17). 


Catch block entries have at least one child entry, an entry representing the type of exception 
accepted by that catch block. This child entry will have one of the tags 
DW_TAG_formal_parameter or DW_TAG_unspecified_parameters, and will have the same 
form as other parameter entries.  


The siblings following any try block entry will be its corresponding catch block entries. 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 59  December 20, 2005 


4 DATA OBJECT AND OBJECT LIST ENTRIES 
This section presents the debugging information entries that describe individual data objects: 
variables, parameters and constants, and lists of those objects that may be grouped in a single 
declaration, such as a common block.  


4.1 Data Object Entries 


Program variables, formal parameters and constants are represented by debugging information 
entries with the tags DW_TAG_variable, DW_TAG_formal_parameter and DW_TAG_constant, 
respectively.  


The tag DW_TAG_constant is used for languages that have true named constants.  


The debugging information entry for a program variable, formal parameter or constant may have 
the following attributes:  


1. A DW_AT_name attribute whose value is a null-terminated string containing the data object 
name as it appears in the source program. 
 
If a variable entry describes a C++ anonymous union, the name attribute is omitted or 
consists of a single zero byte. 


2. If the name of a variable is visible outside of its enclosing compilation unit, the variable entry 
has a DW_AT_external attribute, whose value is a flag.  


The definitions of C++ static data members of structures or classes are represented by 
variable entries flagged as external. Both file static and local variables in C and C++ are 
represented by non-external variable entries. 


3. A DW_AT_declaration attribute, whose value is a flag, which indicates whether this entry 
represents a non-defining declaration of an object. 


4. A DW_AT_location attribute, whose value describes the location of a variable or parameter 
at run-time.  


In a variable entry representing the definition of a variable (that is, with no 
DW_AT_declaration attribute) if no location attribute is present, or if the location attribute is 
present but has a null description (as described in Section 2.6), the variable is assumed to 
exist in the source code but not in the executable program (but see number 10, below). 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 60  December 20, 2005 


In a variable entry representing a non-defining declaration of a variable, the location 
specified modifies the location specified by the defining declaration and only applies for the 
scope of the variable entry; if no location is specified, then the location specified in the 
defining declaration applies. 


The location of a variable may be further specified with a DW_AT_segment attribute, if 
appropriate.  


5. A DW_AT_type attribute describing the type of the variable, constant or formal parameter.  


6. If the variable entry represents the defining declaration for a C++ static data member of a 
structure, class or union, the entry has a DW_AT_specification attribute, whose value is a 
reference to the debugging information entry representing the declaration of this data 
member. The referenced entry has the tag DW_TAG_member and will be a child of some 
class, structure or union type entry.  


If the variable entry represents a non-defining declaration, DW_AT_specification may be 
used to reference the defining declaration of the variable. If no DW_AT_specification 
attribute is present, the defining declaration may be found as a global definition either in the 
current compilation unit or in another compilation unit with the DW_AT_external attribute. 


Variable entries containing the DW_AT_specification attribute do not need to duplicate 
information provided by the declaration entry referenced by the specification attribute. In 
particular, such variable entries do not need to contain attributes for the name or type of the 
data member whose definition they represent.  


7. If a formal parameter entry represents a parameter whose value in the calling function may 
be modified by the callee, that entry may have a DW_AT_variable_parameter attribute, 
whose value is a flag. The absence of this attribute implies that the parameter’s value in the 
calling function cannot be modified by the callee. 


8. If a parameter entry represents an optional parameter, it has a DW_AT_is_optional attribute, 
whose value is a flag. 


9. A formal parameter entry may have a DW_AT_default_value attribute. The value of this 
attribute is a reference to the debugging information entry for a variable or subroutine, or the 
value may be a constant. If it is a reference, the default value of the parameter is the value of 
the variable (which may be constant) or the value returned by the subroutine. If the value of 
the DW_AT_default_value attribute is 0, it means that no default value has been specified. If 
the value is of form constant, that constant is interpreted as a value of the type of the formal 
parameter. 
 
For a constant form there is no way to express the absence of a default value. 







 DATA OBJECT AND OBJECT LIST ENTRIES 
 
 


 
 
December 20, 2005  Page 61 


10. An entry describing a variable or formal parameter whose value is constant and not 
represented by an object in the address space of the program, or an entry describing a named 
constant, does not have a location attribute. Such entries have a DW_AT_const_value 
attribute, whose value may be a string or any of the constant data or data block forms, as 
appropriate for the representation of the variable’s value. The value of this attribute is the 
actual constant value of the variable, represented as it would be on the target architecture.  


One way in which a formal parameter with a constant value and no location can arise is for 
a formal parameter of an inlined subprogram that corresponds to a constant actual 
parameter of a call that is inlined.  


11. If the scope of an object begins sometime after the low pc value for the scope most closely 
enclosing the object, the object entry may have a DW_AT_start_scope attribute. If the 
containing scope is contiguous, the value of this attribute is the offset in bytes of the 
beginning of the scope for the object from the low pc value of the debugging information 
entry that defines its scope. If the containing scope is non-contiguous (see Section 2.17.3), 
the value of this attribute is the offset in bytes of the beginning of the scope for the object 
from the beginning of the first range list entry that is not a base selection entry or an end of 
list entry. 


The scope of a variable may begin somewhere in the middle of a lexical block in a language 
that allows executable code in a block before a variable declaration, or where one declaration 
containing initialization code may change the scope of a subsequent declaration. For 
example, in the following C code:  


float x = 99.99; 
 
int myfunc() 
{ 
     float f = x; 
     float x = 88.99; 
     return 0; 
} 


C scoping rules require that the value of the variable x assigned to the variable f in the 
initialization sequence is the value of the global variable x, rather than the local x, because 
the scope of the local variable x only starts after the full declarator for the local x. 


12. A DW_AT_endianity attribute whose value is a constant that specifies the endianity of the 
object. The value of this attribute specifies an ABI-defined byte ordering for the value of the 
object. If omitted, or the value for this attribute is zero, the default endianity of data for the 
given type is assumed. 
 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 62  December 20, 2005 


The set of values and their meaning for this attribute is given in Figure 12. 
 


Name Meaning 


DW_END_default Default endian encoding 


DW_END_big Big-endian encoding 


DW_END_little Little-endian encoding 


Figure 12. Endianity attribute values 


These represent the default encoding formats as defined by the target architecture’s ABI or 
processor definition. The exact definition of these formats may differ in subtle ways for 
different architectures. 


4.2 Common Block Entries 


A Fortran common block may be described by a debugging information entry with the tag 
DW_TAG_common_block. The common block entry has a DW_AT_name attribute whose 
value is a null-terminated string containing the common block name as it appears in the source 
program. It also has a DW_AT_location attribute whose value describes the location of the 
beginning of the common block. The common block entry owns debugging information entries 
describing the variables contained within the common block.  


4.3 Namelist Entries 


At least one language, Fortran 90, has the concept of a namelist. A namelist is an ordered list of 
the names of some set of declared objects. The namelist object itself may be used as a 
replacement for the list of names in various contexts.  


A namelist is represented by a debugging information entry with the tag DW_TAG_namelist. If 
the namelist itself has a name, the namelist entry has a DW_AT_name attribute, whose value is a 
null-terminated string containing the namelist’s name as it appears in the source program.  


Each name that is part of the namelist is represented by a debugging information entry with the 
tag DW_TAG_namelist_item. Each such entry is a child of the namelist entry, and all of the 
namelist item entries for a given namelist are ordered as were the list of names they correspond 
to in the source program.  


Each namelist item entry contains a DW_AT_namelist_item attribute whose value is a reference 
to the debugging information entry representing the declaration of the item whose name appears 
in the namelist. 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 63  December 20, 2005 


5 TYPE ENTRIES 
This section presents the debugging information entries that describe program types: base types, 
modified types and user-defined types.  


If the scope of the declaration of a named type begins sometime after the low pc value for the 
scope most closely enclosing the declaration, the declaration may have a DW_AT_start_scope 
attribute. If the containing scope is contiguous, the value of this attribute is the offset in bytes of 
the beginning of the scope for the declaration from the low pc value of the debugging 
information entry that defines its scope. . If the containing scope is non-contiguous (see Section 
2.17.3), the value of this attribute is the offset in bytes of the beginning of the scope for the 
object from the beginning of the first range list entry that is not a base selection entry or an end 
of list entry. 


5.1 Base Type Entries 


A base type is a data type that is not defined in terms of other data types. Each programming 
language has a set of base types that are considered to be built into that language.  


A base type is represented by a debugging information entry with the tag DW_TAG_base_type. 
A base type entry has a DW_AT_name attribute whose value is a null-terminated string 
describing the name of the base type as recognized by the programming language of the 
compilation unit containing the base type entry.  


A base type entry also has a DW_AT_encoding attribute describing how the base type is 
encoded and is to be interpreted. The value of this attribute is an integer constant. The set of 
values and their meanings for the DW_AT_encoding attribute is given in Figure 13 and 
following text.  


A base type entry may also have a DW_AT_endianity attribute as described in Section 4.1. If 
omitted, the encoding assumes the representation that is the default for the target architecture. 


A base type entry has a DW_AT_byte_size attribute, whose value (see Section 2.19) is the size 
in bytes of the storage unit used to represent an object of the given type.  


If the value of an object of the given type does not fully occupy the storage unit described by the 
byte size attribute, the base type entry may have a DW_AT_bit_size attribute and a 
DW_AT_bit_offset attribute, both of whose values (see Section 2.19) are integers. The bit size 
attribute describes the actual size in bits used to represent a value of the given type. The bit offset 
attribute describes the offset in bits of the high order bit of a value of the given type from the 
high order bit of the storage unit used to contain that value. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 64  December 20, 2005 


For example, the C type int on a machine that uses 32-bit integers is represented by a base type 
entry with a name attribute whose value is “int”, an encoding attribute whose value is 
DW_ATE_signed and a byte size attribute whose value is 4.  


  


Name Meaning  


DW_ATE_address linear machine address  


DW_ATE_boolean true or false  


DW_ATE_complex_float complex binary floating-point number  


DW_ATE_float binary floating-point number  


DW_ATE_imaginary_float imaginary binary floating-point number 


DW_ATE_signed signed binary integer  


DW_ATE_signed_char signed character  


DW_ATE_unsigned unsigned binary integer  


DW_ATE_unsigned_char unsigned character  


DW_ATE_packed_decimal packed decimal 


DW_ATE_numeric_string numeric string 


DW_ATE_edited edited string 


DW_ATE_signed_fixed signed fixed-point scaled integer 


DW_ATE_unsigned_fixed unsigned fixed-point scaled integer 


DW_ATE_decimal_float decimal floating-point number 


Figure 13. Encoding attribute values 


TheDW_ATE_decimal_float encoding is intended for floating-point representations that have a 
power-of-ten exponent, such as that specified in IEEE 754R. 







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 65 


The DW_ATE_packed_decimal and DW_ATE_numeric_string base types represent decimal 
string numeric data types; packed and unpacked, and, signed and unsigned. These base types are 
used in combination with DW_AT_decimal_sign, DW_AT_digit_count and 
DW_AT_decimal_scale attributes. 


A DW_AT_decimal_sign attribute is an integer constant that conveys the representation of the 
sign of the decimal type (see Figure 14). Its integer constant value is interpreted to mean that the 
type has a leading overpunch, trailing overpunch, leading separate or trailing separate sign 
representation or, alternatively, no sign at all. 


The DW_AT_digit_count attribute is an integer constant value that represents the number of 
digits in an instance of the type. 


The DW_AT_decimal_scale attribute is an integer constant value that represents the exponent of 
the base ten scale factor to be applied to an instance of the type. A scale of zero puts the decimal 
point immediately to the right of the least significant digit. Positive scale moves the decimal 
point to the right and implies that additional zero digits on the right are not stored in an instance 
of the type. Negative scale moves the decimal point to the left; if the absolute value of the scale 
is larger than the digit count, this implies additional zero digits on the left are not stored in an 
instance of the type. 


The DW_ATE_edited base type is used to represent a COBOL edited numeric or alphanumeric 
data type. It is used in combination with an DW_AT_picture_string attribute whose value is a 
null-terminated string containing the target-dependent picture string associated with the type. 


If the edited base type entry describes an edited numeric data type, the edited type entry has a 
DW_AT_digit_count and a DW_AT_decimal_scale attribute. These attributes are interpreted in 
the context of the DW_ATE_packed_decimal and DW_ATE_numeric_string base types. If the 
edited type entry describes an edited alphanumeric data type, the edited type entry does not have 
these attributes. 


The presence or absence of the DW_AT_digit_count and DW_AT_decimal_scale attributes 
allows a debugger to easily distinguish edited numeric from edited alphanumeric, although in 
principle the digit count and scale are derivable by interpreting the picture string. 


The DW_ATE_signed_fixed and DW_ATE_unsigned_fixed entries describe signed and 
unsigned fixed-point binary data types, respectively. 


The fixed binary type entries have a DW_AT_digit_count attribute with the same interpretation 
as described for the DW_ATE_packed_decimal and DW_ATE_numeric_string base types. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 66  December 20, 2005 


For a data type with a decimal scale factor, the fixed binary type entry has a 
DW_AT_decimal_scale attribute with the same interpretation as described for the 
DW_ATE_packed_decimal and DW_ATE_numeric_string base types. 


For a data type with a binary scale factor, the fixed binary type entry has a 
DW_AT_binary_scale attribute. The DW_AT_binary_scale attribute is an integer constant value 
that represents the exponent of the base two scale factor to be applied to an instance of the type. 
Zero scale puts the binary point immediately to the right of the least significant bit. Positive scale 
moves the binary point to the right and implies that additional zero bits on the right are not stored 
in an instance of the type. Negative scale moves the binary point to the left; if the absolute value 
of the scale is larger than the number of bits, this implies additional zero bits on the left are not 
stored in an instance of the type. 


For a data type with an arbitrary scale factor, the fixed binary type entry has a DW_AT_small 
attribute. It references a DW_TAG_constant entry with an arbitrary type attribute. The scale 
factor value is interpreted in accordance with the value enumerated in the DW_TAG_constant 
entry. The value represented is the product of the integer value in memory and the associated 
constant entry for the type. 


The DW_AT_small attribute is defined with the Ada small attribute in mind. 


 


Name Meaning 


DW_DS_unsigned Unsigned 


DW_DS_leading_overpunch Sign is encoded in the most significant digit in a target-dependent 
manner 


DW_DS_trailing_overpunch Sign is encoded in the least significant digit in a target-dependent 
manner 


DW_DS_leading_separate Sign is a ‘+’ or ‘-’ character to the left of the most significant 
digit 


DW_DS_trailing_separate Decimal type: Sign is a ‘+’ or ‘-’ character to the right of the least 
significant digit 
Packed decimal type: Least significant nibble contains a target-
dependent value indicating positive or negative 


Figure 14. Decimal sign attribute values 







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 67 


5.2 Unspecified Type Entries 


Some languages have constructs in which a type may be left unspecified or the absence of a type 
may be explicitly indicated.  


An unspecified (implicit, unknown, ambiguous or nonexistent) type is represented by a 
debugging information entry with the tag DW_TAG_unspecified_type. If a name has been given 
to the type, then the corresponding unspecified type entry has a DW_AT_name attribute whose 
value is a null-terminated string containing the name as it appears in the source program.  


The interpretation of this debugging information entry is intentionally left flexible to allow it to 
be interpreted appropriately in different languages. For example, in C and C++ the language 
implementation can provide an unspecified type entry with the name "void" which can be 
referenced by the type attribute of pointer types and typedef declarations for 'void' (see Sections 
5.3 and 5.4, respectively). As another example, in Ada such an unspecified type entry can be 
referred to by the type attribute of an access type where the denoted type is incomplete (the name 
is declared as a type but the definition is deferred to a separate compilation unit).  


 


5.3 Type Modifier Entries 


A base or user-defined type may be modified in different ways in different languages. A type 
modifier is represented in DWARF by a debugging information entry with one of the tags given 
in Figure 15.  


If a name has been given to the modified type in the source program, then the corresponding 
modified type entry has a DW_AT_name attribute whose value is a null-terminated string 
containing the modified type name as it appears in the source program.  


Each of the type modifier entries has a DW_AT_type attribute, whose value is a reference to a 
debugging information entry describing a base type, a user-defined type or another type 
modifier.  


A modified type entry describing a pointer or reference type may have a DW_AT_address_class 
attribute to describe how objects having the given pointer or reference type ought to be 
dereferenced.  


A modified type entry describing a shared qualified type (see Section 5.12) may have a 
DW_AT_count attribute whose value is a constant expressing the blocksize of the type. If no 
count attribute is present, then the “infinite” blocksize is assumed. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 68  December 20, 2005 


When multiple type modifiers are chained together to modify a base or user-defined type, they 
are ordered as if part of a right-associative expression involving the base or user-defined type.  


 


Tag Meaning  


DW_TAG_const_type C or C++ const qualified type  


DW_TAG_packed_type Pascal or Ada packed type  


DW_TAG_pointer_type Pointer to an object of the type being modified. 


DW_TAG_reference_type C++ reference to an object of the type being modified  


DW_TAG_restrict_type C restrict qualified type 


DW_TAG_shared_type UPC shared qualified type 


DW_TAG_volatile_type C or C++ volatile qualified type  


Figure 15. Type modifier tags 


 
  


As examples of how type modifiers are ordered, take the following C declarations:  
const unsigned char * volatile p; 
    which represents a volatile pointer to a constant 
    character. This is encoded in DWARF as: 
        DW_TAG_variable(p) → 
            DW_TAG_volatile_type → 
                DW_TAG_pointer_type → 
                    DW_TAG_const_type → 
                        DW_TAG_base_type(unsigned char) 


 







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 69 


volatile unsigned char * const restrict p; 
    on the other hand, represents a restricted constant 
    pointer to a volatile character. This is encoded as: 
        DW_TAG_variable(p) → 
            DW_TAG_restrict_type → 
                DW_TAG_const_type → 
                    DW_TAG_pointer_type → 
                        DW_TAG_volatile_type → 
                            DW_TAG_base_type(unsigned char) 
 


5.4 Typedef Entries 


Any arbitrary type named via a C/C++ typedef is represented by a debugging information entry 
with the tag DW_TAG_typedef. The typedef entry has a DW_AT_name attribute whose value is 
a null-terminated string containing the name of the typedef as it appears in the source program. 
The typedef entry also contains a DW_AT_type attribute.  


If the debugging information entry for a typedef represents a declaration of the type that is not 
also a definition, it does not contain a type attribute.  


5.5 Array Type Entries 


Many languages share the concept of an “array,” which is a table of components of identical 
type.  


An array type is represented by a debugging information entry with the tag 
DW_TAG_array_type. If a name has been given to the array type in the source program, then the 
corresponding array type entry has a DW_AT_name attribute whose value is a null-terminated 
string containing the array type name as it appears in the source program.  


The array type entry describing a multidimensional array may have a DW_AT_ordering attribute 
whose integer constant value is interpreted to mean either row-major or column-major ordering 
of array elements. The set of values and their meanings for the ordering attribute are listed in 
Figure 16. If no ordering attribute is present, the default ordering for the source language (which 
is indicated by the DW_AT_language attribute of the enclosing compilation unit entry) is 
assumed.  
 


DW_ORD_col_major  


DW_ORD_row_major 


Figure 16. Array ordering 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 70  December 20, 2005 


The ordering attribute may optionally appear on one-dimensional arrays; it will be ignored.  


An array type entry has a DW_AT_type attribute describing the type of each element of the 
array.  


If the amount of storage allocated to hold each element of an object of the given array type is 
different from the amount of storage that is normally allocated to hold an individual object of the 
indicated element type, then the array type entry has a DW_AT_bit_stride attribute, whose value 
(see Section 2.19) is the size in bits of each element of the array.  


The name DW_AT_bit_stride replaces the name DW_AT_stride_size which is defined in DWARF 
Version 2. The name DW_AT_stride_size may be used as an alias for DW_AT_bit_stride but use 
of DW_AT_stride_size is deprecated. 


The array type entry may have a DW_AT_byte_size attribute, whose value (see Section 2.19) is 
the total size in bytes of an instance of the array type.  


If the size of the array can be determined statically at compile time, this value can usually be 
computed by multiplying the number of array elements by the size of each element.  


Each array dimension is described by a debugging information entry with either the tag 
DW_TAG_subrange_type or the tag DW_TAG_enumeration_type. These entries are children of 
the array type entry and are ordered to reflect the appearance of the dimensions in the source 
program (i.e., leftmost dimension first, next to leftmost second, and so on).  


In languages, such as C, in which there is no concept of a “multidimensional array”, an array of 
arrays may be represented by a debugging information entry for a multidimensional array. 


Other attributes especially applicable to arrays are DW_AT_allocated, DW_AT_associated and 
DW_AT_data_location, which are described in Section 5.15. For relevant examples, see also 
Appendix D.2.1. 


5.6 Structure, Union, Class and Interface Type Entries 


The languages C, C++, and Pascal, among others, allow the programmer to define types that 
are collections of related components. In C and C++, these collections are called “structures.” 
In Pascal, they are called “records.” The components may be of different types. The components 
are called “members” in C and C++, and “fields” in Pascal.  


The components of these collections each exist in their own space in computer memory. The 
components of a C or C++ “union” all coexist in the same memory.  







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 71 


Pascal and other languages have a “discriminated union,” also called a “variant record.” Here, 
selection of a number of alternative substructures (“variants”) is based on the value of a 
component that is not part of any of those substructures (the “discriminant”).  


C++ and Java have the notion of "class”, which is in some ways similar to a structure. A class 
may have “member functions” which are subroutines that are within the scope of a class or 
structure.  


The C++ notion of structure is more general than in C, being equivalent to a class with minor 
differences. Accordingly, in the following discussion statements about C++ classes may be 
understood to apply to C++ structures as well. 


5.6.1 Structure, Union and Class Type Entries 


Structure, union, and class types are represented by debugging information entries with the tags 
DW_TAG_structure_type, DW_TAG_union_type, and DW_TAG_class_type, respectively. If a 
name has been given to the structure, union, or class in the source program, then the 
corresponding structure type, union type, or class type entry has a DW_AT_name attribute 
whose value is a null-terminated string containing the type name as it appears in the source 
program. 


The members of a structure, union, or class are represented by debugging information entries that 
are owned by the corresponding structure type, union type, or class type entry and appear in the 
same order as the corresponding declarations in the source program. 


If the size of an instance of the structure type, union type, or class type entry can be determined 
statically at compile time, the entry has a DW_AT_byte_size attribute whose integer constant 
value is the number of bytes required to hold an instance of the structure, union, or class, 
including any padding bytes. Otherwise, the entry may have a DW_AT_byte_size attribute 
whose value (see Section 2.19) is the dynamic number of bytes required. 


An incomplete structure, union or class type is represented by a structure, union or class entry 
that does not have a byte size attribute and that has a DW_AT_declaration attribute. 


If a structure, union or class entry represents the defining declaration of a structure, class or 
union member of another structure class or union, the entry has a DW_AT_specification attribute 
whose value is a reference to the debugging information entry representing the incomplete 
declaration, as described above. 


Structure, union and class entries containing the DW_AT_specification attribute do not need to 
duplicate information provided by the declaration entry referenced by the specification attribute. 
In particular, such entries do not need to contain an attribute for the name of structure, class or 
union they represent. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 72  December 20, 2005 


For C and C++, data member declarations occurring within the declaration of a structure, 
union or class type are considered to be “definitions” of those members, with the exception of 
“static” data members, whose definitions appear outside of the declaration of the enclosing 
structure, union or class type. Function member declarations appearing within a structure, 
union or class type declaration are definitions only if the body of the function also appears 
within the type declaration.  


If the definition for a given member of the structure, union or class does not appear within the 
body of the declaration, that member also has a debugging information entry describing its 
definition. That latter entry will have a DW_AT_specification attribute referencing the 
debugging entry owned by the body of the structure, union or class debugging entry and 
representing a non-defining declaration of the data, function or type member. The referenced 
entry will not have information about the location of that member (low and high pc attributes for 
function members, location descriptions for data members) and will have a DW_AT_declaration 
attribute. 


Consider a nested class whose definition occurs outside of the containing class definition, as in: 
    struct A { 
        struct B; 
    }; 
 
    struct A::B { … }; 


The two different structs can be described in different compilation units to facilitate DWARF 
space compression (see Appendix E). 


5.6.2 Interface Type Entries 


The Java language defines "interface" types. An interface in Java is similar to a C++ or Java 
class with only abstract methods and constant data members. 


Interface types are represented by debugging information entries with the tag 
DW_TAG_interface_type. 


An interface type entry has a DW_AT_name attribute, whose value is a null-terminated string 
containing the type name as it appears in the source program. 


The members of an interface are represented by debugging information entries that are owned by 
the interface type entry and that appear in the same order as the corresponding declarations in the 
source program. 







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 73 


5.6.3 Derived or Extended Classes and Interfaces 


In C++, a class may be "derived from" or be a "subclass of" another class. In Java, an interface 
may "extend" one or more other interfaces, and a class may "extend" another class and/or 
"implement" one or more interfaces. All of these relationships may be described using the 
following. Note that in Java, the distinction between extends and implements is implied by the 
entities at the two ends of the relationship. 


A class type or interface type entry that describes a derived, extended or implementing class or 
interface owns debugging information entries describing each of the classes or interfaces it is 
derived from, extending or implementing, respectively, ordered as they were in the source 
program. Each such entry has the tag DW_TAG_inheritance. 


An inheritance entry has a DW_AT_type attribute whose value is a reference to the debugging 
information entry describing the class or interface from which the parent class or structure of the 
inheritance entry is derived, extended or implementing. 


An inheritance entry for a class that derives from or extends another class also has a 
DW_AT_data_member_location attribute, whose value describes the location of the beginning 
of the inherited type relative to the beginning address of the derived class. If that value is a 
constant, it is the offset in bytes from the beginning of the class to the beginning of the inherited 
type. Otherwise, the value must be a location description. In this latter case, the beginning 
address of the derived class is pushed on the expression stack before the location expression is 
evaluated and the result of the evaluation is the location of the inherited type. 


The interpretation of the value of this attribute for inherited types is the same as the 
interpretation for data members (see Section 5.6.6). 


An inheritance entry may have a DW_AT_accessibility attribute. If no accessibility attribute is 
present, private access is assumed for an entry of a class and public access is assumed for an 
entry of an interface. 


If the class referenced by the inheritance entry serves as a C++ virtual base class, the inheritance 
entry has a DW_AT_virtuality attribute. 


For a C++ virtual base, the data member location attribute will usually consist of a non-trivial 
location expression. 


5.6.4 Access Declarations 


In C++, a derived class may contain access declarations that change the accessibility of 
individual class members from the overall accessibility specified by the inheritance declaration. 
A single access declaration may refer to a set of overloaded names.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 74  December 20, 2005 


If a derived class or structure contains access declarations, each such declaration may be 
represented by a debugging information entry with the tag DW_TAG_access_declaration. Each 
such entry is a child of the class or structure type entry.  


An access declaration entry has a DW_AT_name attribute, whose value is a null-terminated 
string representing the name used in the declaration in the source program, including any class or 
structure qualifiers.  


An access declaration entry also has a DW_AT_accessibility attribute describing the declared 
accessibility of the named entities. 


5.6.5 Friends 


Each “friend” declared by a structure, union or class type may be represented by a debugging 
information entry that is a child of the structure, union or class type entry; the friend entry has 
the tag DW_TAG_friend.  


A friend entry has a DW_AT_friend attribute, whose value is a reference to the debugging 
information entry describing the declaration of the friend.  


5.6.6 Data Member Entries 


A data member (as opposed to a member function) is represented by a debugging information 
entry with the tag DW_TAG_member. The member entry for a named member has a 
DW_AT_name attribute whose value is a null-terminated string containing the member name as 
it appears in the source program. If the member entry describes a C++ anonymous union, the 
name attribute is omitted or consists of a single zero byte.  


The data member entry has a DW_AT_type attribute to denote the type of that member.  


A data member entry may have a DW_AT_accessibility attribute. If no accessibility attribute is 
present, private access is assumed for an entry of a class and public access is assumed for an 
entry of a structure, union, or interface. 


A data member entry may have a DW_AT_mutable attribute whose value is a flag. This attribute 
indicates whether the data member was declared with the mutable storage class specifier. 


If a data member is defined in a structure, union or class, the corresponding member entry has a 
DW_AT_data_member_location attribute whose value describes the location of that member 
relative to the base address of the structure, union, or class that most closely encloses the 
member declaration. If that value is a constant, it is the offset in bytes from the beginning of the 
innermost enclosing structure, union or class to the beginning of the data member. Otherwise, the 
value must be a location description. In this latter case, the base address of the innermost 







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 75 


enclosing structure, union, or class is pushed on the expression stack before the location 
expression is evaluated and the result of the evaluation is the location of the member. 


The interpretation of a constant operand as a byte offset from the base of the containing 
structure, union or class optimizes the size of the DWARF representation for the predominant 
case of a data member at a fixed offset. Note that no DWARF location expression evaluation is 
involved. 


For a location description, the implicit push on the DWARF expression stack of the base address 
of the containing construct is equivalent to execution of the DW_OP_push_object_address 
operation (see Section 2.5.1.3); DW_OP_push_object_address therefore is not needed at the 
beginning of a location expression for a data member. The result of the evaluation is a location--
either an address or the name of a register, not an offset to the member. 


The location description for a data member of a union may be omitted, since all data members of 
a union begin at the same address.  


If the data member entry describes a bit field, then that entry has the following attributes: 


• A DW_AT_byte_size attribute whose value (see Section 2.19) is the number of bytes that 
contain an instance of the bit field and any padding bits.  


The byte size attribute may be omitted if the size of the object containing the bit field can be 
inferred from the type attribute of the data member containing the bit field.  


• A DW_AT_bit_offset attribute whose value (see Section 2.19) is the number of bits to the 
left of the leftmost (most significant) bit of the bit field value.  


• A DW_AT_bit_size attribute whose value (see Section 2.19) is the number of bits occupied 
by the bit field value.  


The location description for a bit field calculates the address of an anonymous object containing 
the bit field. The address is relative to the structure, union, or class that most closely encloses the 
bit field declaration. The number of bytes in this anonymous object is the value of the byte size 
attribute of the bit field. The offset (in bits) from the most significant bit of the anonymous object 
to the most significant bit of the bit field is the value of the bit offset attribute.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 76  December 20, 2005 


For example, take one possible representation of the following structure definition in both big 
and little endian byte orders:  
    struct S { 
        int j:5; 
        int k:6; 
        int m:5; 
        int n:8; 
    }; 


In both cases, the location descriptions for the debugging information entries for j, k, m and n 
describe the address of the same 32-bit word that contains all three members. (In the big-endian 
case, the location description addresses the most significant byte, in the little-endian case, the 
least significant).  


The following diagram shows the structure layout and lists the bit offsets for each case. The 
offsets are from the most significant bit of the object addressed by the location description.  
Bit Offsets: 


j:0 
k:5 
m:11 
n:16 


 


Big-Endian 


0 
     j 
31 


  
     k 
26 


  
     m 
20 


  
     n 
15 


  
   pad 
7        0 


 


Bit Offsets: 
j:27 
k:21 
m:16 
n:8 


Little-Endian 


  
   pad 
31 


  
     n 
23 


  
     m 
15 


  
     k 
10 


         0 
   j 
4        0 


 







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 77 


5.6.7 Member Function Entries 


A member function is represented by a debugging information entry with the tag 
DW_TAG_subprogram. The member function entry may contain the same attributes and follows 
the same rules as non-member global subroutine entries (see Section 3.3).  


A member function entry may have a DW_AT_accessibility attribute. If no accessibility attribute 
is present, private access is assumed for an entry of a class and public access is assumed for an 
entry of a structure, union or interface. 


If the member function entry describes a virtual function, then that entry has a 
DW_AT_virtuality attribute.  


If the member function entry describes an explicit member function, then that entry has a 
DW_AT_explicit attribute. 


An entry for a virtual function also has a DW_AT_vtable_elem_location attribute whose value 
contains a location description yielding the address of the slot for the function within the virtual 
function table for the enclosing class. The address of an object of the enclosing type is pushed 
onto the expression stack before the location description is evaluated. 


If the member function entry describes a non-static member function, then that entry has a 
DW_AT_object_pointer attribute whose value is a reference to the formal parameter entry that 
corresponds to the object for which the function is called. The name attribute of that formal 
parameter is defined by the current language (for example, this for C++ or self for 
Objective-C and some other languages). That parameter also has a DW_AT_artificial attribute 
whose value is true. 


Conversely, if the member function entry describes a static member function, the entry does not 
have a DW_AT_object_pointer attribute. 


If the member function entry describes a non-static member function that has a const-volatile 
qualification, then the entry describes a non-static member function whose object formal 
parameter has a type that has an equivalent const-volatile qualification. 


The type of the formal parameter of a non-static member function need not be checked by a 
consumer to confirm that it is a pointer to the parent class or a const-volatile qualified variant 
thereof because the requirements of correct DWARF make such a test superfluous. 


If a subroutine entry represents the defining declaration of a member function and that definition 
appears outside of the body of the enclosing class declaration, the subroutine entry has a 
DW_AT_specification attribute, whose value is a reference to the debugging information entry 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 78  December 20, 2005 


representing the declaration of this function member. The referenced entry will be a child of 
some class (or structure) type entry. 


Subroutine entries containing the DW_AT_specification attribute do not need to duplicate 
information provided by the declaration entry referenced by the specification attribute. In 
particular, such entries do not need to contain attributes for the name or return type of the 
function member whose definition they represent.  


5.6.8 Class Template Instantiations 


In C++ a class template is a generic definition of a class type that may be instantiated when an 
instance of the class is declared or defined. The generic description of the class may include both 
parameterized types and parameterized constant values. DWARF does not represent the generic 
template definition, but does represent each instantiation.  


A class template instantiation is represented by a debugging information entry with the tag 
DW_TAG_class_type, DW_TAG_structure_type or DW_TAG_union_type. With four 
exceptions, such an entry will contain the same attributes and have the same types of child 
entries as would an entry for a class type defined explicitly using the instantiation types and 
values. The exceptions are:  


1. Each formal parameterized type declaration appearing in the template definition is 
represented by a debugging information entry with the tag 
DW_TAG_template_type_parameter. Each such entry may have a DW_AT_name attribute, 
whose value is a null-terminated string containing the name of the formal type parameter as it 
appears in the source program. The template type parameter entry also has a DW_AT_type 
attribute describing the actual type by which the formal is replaced for this instantiation.  


2. Each formal parameterized value declaration appearing in the template definition is 
represented by a debugging information entry with the tag 
DW_TAG_template_value_parameter. Each such entry may have a DW_AT_name attribute, 
whose value is a null-terminated string containing the name of the formal value parameter as 
it appears in the source program. The template value parameter entry also has a 
DW_AT_type attribute describing the type of the parameterized value. Finally, the template 
value parameter entry has a DW_AT_const_value attribute, whose value is the actual 
constant value of the value parameter for this instantiation as represented on the target 
architecture.  


3. If the compiler has generated a special compilation unit to hold the template instantiation and 
that compilation unit has a different name from the compilation unit containing the template 
definition, the name attribute for the debugging entry representing that compilation unit 
should be empty or omitted.  







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 79 


4. If the class type entry representing the template instantiation or any of its child entries 
contain declaration coordinate attributes, those attributes should refer to the source for the 
template definition, not to any source generated artificially by the compiler.  


5.6.9 Variant Entries 


A variant part of a structure is represented by a debugging information entry with the tag 
DW_TAG_variant_part and is owned by the corresponding structure type entry.  


If the variant part has a discriminant, the discriminant is represented by a separate debugging 
information entry which is a child of the variant part entry. This entry has the form of a structure 
data member entry. The variant part entry will have a DW_AT_discr attribute whose value is a 
reference to the member entry for the discriminant.  


If the variant part does not have a discriminant (tag field), the variant part entry has a 
DW_AT_type attribute to represent the tag type.  


Each variant of a particular variant part is represented by a debugging information entry with the 
tag DW_TAG_variant and is a child of the variant part entry. The value that selects a given 
variant may be represented in one of three ways. The variant entry may have a 
DW_AT_discr_value attribute whose value represents a single case label. The value of this 
attribute is encoded as an LEB128 number. The number is signed if the tag type for the variant 
part containing this variant is a signed type. The number is unsigned if the tag type is an 
unsigned type.  


Alternatively, the variant entry may contain a DW_AT_discr_list attribute, whose value 
represents a list of discriminant values. This list is represented by any of the block forms and 
may contain a mixture of case labels and label ranges. Each item on the list is prefixed with a 
discriminant value descriptor that determines whether the list item represents a single label or a 
label range. A single case label is represented as an LEB128 number as defined above for the 
DW_AT_discr_value attribute. A label range is represented by two LEB128 numbers, the low 
value of the range followed by the high value. Both values follow the rules for signedness just 
described. The discriminant value descriptor is an integer constant that may have one of the 
values given in Figure 17.  
 


DW_DSC_label  


DW_DSC_range  


Figure 17. Discriminant descriptor values 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 80  December 20, 2005 


 
If a variant entry has neither a DW_AT_discr_value attribute nor a DW_AT_discr_list attribute, 
or if it has a DW_AT_discr_list attribute with 0 size, the variant is a default variant.  


The components selected by a particular variant are represented by debugging information 
entries owned by the corresponding variant entry and appear in the same order as the 
corresponding declarations in the source program.  


5.7 Condition Entries 


COBOL has the notion of a “level-88 condition” that associates a data item, called the 
conditional variable, with a set of one or more constant values and/or value ranges. 
Semantically, the condition is 'true' if the conditional variable's value matches any of the 
described constants, and the condition is 'false' otherwise. 


The DW_TAG_condition debugging information entry describes a COBOL level-88 condition. 
If a name has been given to the condition, the condition entry has a DW_AT_name attribute 
whose value is a null-terminated string giving the condition name as it appears in the source 
program. 


The condition entry's parent entry describes the conditional variable; normally this will be a 
DW_TAG_variable or DW_TAG_member entry. The type of the condition entry is derived from 
the DW_AT_type attribute of the parent entry. 


The condition entry owns DW_TAG_constant and/or DW_TAG_subrange_type entries that 
describe the constant values associated with the condition. If any child entry has a DW_AT_type 
attribute, that attribute should describe a type compatible with the type derived from the 
condition entry's parent. 


For conditional variables with alphanumeric types, COBOL permits a source program to 
provide ranges of alphanumeric constants in the condition. Normally a subrange type entry does 
not describe ranges of strings; however, this can be represented using bounds attributes that are 
references to constant entries describing strings. A subrange type entry may refer to constant 
entries that are siblings of the subrange type entry. 


5.8 Enumeration Type Entries 


An “enumeration type” is a scalar that can assume one of a fixed number of symbolic values.  


An enumeration type is represented by a debugging information entry with the tag 
DW_TAG_enumeration_type.  







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 81 


If a name has been given to the enumeration type in the source program, then the corresponding 
enumeration type entry has a DW_AT_name attribute whose value is a null-terminated string 
containing the enumeration type name as it appears in the source program. This entry also has a 
DW_AT_byte_size attribute whose integer constant value is the number of bytes required to hold 
an instance of the enumeration. 


The enumeration type entry may also have a DW_AT_type attribute which refers to the 
underlying data type used to implement the enumeration. 


In C or C++, the underlying type will be the appropriate integral type determined by the 
compiler from the properties of the enumeration literal values.  


Each enumeration literal is represented by a debugging information entry with the tag 
DW_TAG_enumerator. Each such entry is a child of the enumeration type entry, and the 
enumerator entries appear in the same order as the declarations of the enumeration literals in the 
source program.  


Each enumerator entry has a DW_AT_name attribute, whose value is a null-terminated string 
containing the name of the enumeration literal as it appears in the source program. Each 
enumerator entry also has a DW_AT_const_value attribute, whose value is the actual numeric 
value of the enumerator as represented on the target system.  


If the enumeration type occurs as the description of a dimension of an array type, and the stride 
for that dimension is different than what would otherwise be determined, then the enumeration 
type entry has either a DW_AT_byte_stride or DW_AT_bit_stride attribute which specifies the 
separation between successive elements along the dimension as described in Section 2.19. The 
value of the DW_AT_bit_stride attribute is interpreted as bits and the value of the 
DW_AT_byte_stride attribute is interpreted as bytes. 


The name DW_AT_byte_stride replaces the name DW_AT_stride which is defined in DWARF 
Version 2. The name DW_AT_stride may be used as an alias for DW_AT_byte_stride but use of 
DW_AT_stride is deprecated. 


5.9 Subroutine Type Entries 


It is possible in C to declare pointers to subroutines that return a value of a specific type. In both 
C and C++, it is possible to declare pointers to subroutines that not only return a value of a 
specific type, but accept only arguments of specific types. The type of such pointers would be 
described with a “pointer to” modifier applied to a user-defined type.  


A subroutine type is represented by a debugging information entry with the tag 
DW_TAG_subroutine_type. If a name has been given to the subroutine type in the source 
program, then the corresponding subroutine type entry has a DW_AT_name attribute whose 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 82  December 20, 2005 


value is a null-terminated string containing the subroutine type name as it appears in the source 
program.  


If the subroutine type describes a function that returns a value, then the subroutine type entry has 
a DW_AT_type attribute to denote the type returned by the subroutine. If the types of the 
arguments are necessary to describe the subroutine type, then the corresponding subroutine type 
entry owns debugging information entries that describe the arguments. These debugging 
information entries appear in the order that the corresponding argument types appear in the 
source program.  


In C there is a difference between the types of functions declared using function prototype style 
declarations and those declared using non-prototype declarations.  


A subroutine entry declared with a function prototype style declaration may have a 
DW_AT_prototyped attribute, whose value is a flag.  


Each debugging information entry owned by a subroutine type entry has a tag whose value has 
one of two possible interpretations: 


1. The formal parameters of a parameter list (that have a specific type) are represented by a 
debugging information entry with the tag DW_TAG_formal_parameter. Each formal 
parameter entry has a DW_AT_type attribute that refers to the type of the formal parameter.  


2. The unspecified parameters of a variable parameter list are represented by a debugging 
information entry with the tag DW_TAG_unspecified_parameters.  


5.10 String Type Entries 


A “string” is a sequence of characters that have specific semantics and operations that separate 
them from arrays of characters. Fortran is one of the languages that has a string type. Note that 
"string" in this context refers to a target machine concept, not the class string as used in this 
document (except for the name attribute). 


A string type is represented by a debugging information entry with the tag 
DW_TAG_string_type. If a name has been given to the string type in the source program, then 
the corresponding string type entry has a DW_AT_name attribute whose value is a null- 
terminated string containing the string type name as it appears in the source program.  


The string type entry may have a DW_AT_string_length attribute whose value is a location 
description yielding the location where the length of the string is stored in the program. The 
string type entry may also have a DW_AT_byte_size attribute, whose value (see Section 2.19) is 
the size in bytes of the data to be retrieved from the location referenced by the string length 







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 83 


attribute. If no byte size attribute is present, the size of the data to be retrieved is the same as the 
size of an address on the target machine.  


If no string length attribute is present, the string type entry may have a DW_AT_byte_size 
attribute, whose value (see Section 2.19) is the length in bytes of the string.  


5.11 Set Entries 


Pascal provides the concept of a “set,” which represents a group of values of ordinal type.  


A set is represented by a debugging information entry with the tag DW_TAG_set_type. If a 
name has been given to the set type, then the set type entry has a DW_AT_name attribute whose 
value is a null-terminated string containing the set type name as it appears in the source program.  


The set type entry has a DW_AT_type attribute to denote the type of an element of the set.  


If the amount of storage allocated to hold each element of an object of the given set type is 
different from the amount of storage that is normally allocated to hold an individual object of the 
indicated element type, then the set type entry has a DW_AT_byte_size attribute, whose value 
(see Section 2.19) is the size in bytes of an instance of the set type.  


5.12 Subrange Type Entries 


Several languages support the concept of a “subrange” type object. These objects can represent 
a subset of the values that an object of the basis type for the subrange can represent. Subrange 
type entries may also be used to represent the bounds of array dimensions.  


A subrange type is represented by a debugging information entry with the tag 
DW_TAG_subrange_type. If a name has been given to the subrange type, then the subrange type 
entry has a DW_AT_name attribute whose value is a null-terminated string containing the 
subrange type name as it appears in the source program.  


The subrange entry may have a DW_AT_type attribute to describe the type of object, called the 
basis type, of whose values this subrange is a subset.  


If the amount of storage allocated to hold each element of an object of the given subrange type is 
different from the amount of storage that is normally allocated to hold an individual object of the 
indicated element type, then the subrange type entry has a DW_AT_byte_size attribute, whose 
value (see Section 2.19) is the size in bytes of each element of the subrange type.  


The subrange entry may have a DW_AT_threads_scaled attribute whose value is a flag. If 
present, this attribute indicates whether this subrange represents a UPC array bound which is 
scaled by the runtime THREADS value (the number of UPC threads in this execution of the 
program). 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 84  December 20, 2005 


This allows the representation of a UPC shared array such as 


 int shared foo[34*THREADS][10][20]; 


The subrange entry may have the attributes DW_AT_lower_bound and DW_AT_upper_bound 
to describe, respectively, the lower and upper bound values of the subrange. The 
DW_AT_upper_bound attribute may be replaced by a DW_AT_count attribute, whose value 
describes the number of elements in the subrange rather than the value of the last element. The 
value of each of these attributes is determined as described in Section 2.19. 


If the lower bound value is missing, the value is assumed to be a language-dependent default 
constant. The default lower bound value for C or C++ is 0. For Fortran, it is 1. 


No other default lower bound values are currently defined. 


If the upper bound and count are missing, then the upper bound value is unknown. 


If the subrange entry has no type attribute describing the basis type, the basis type is assumed to 
be the same as the object described by the lower bound attribute (if it references an object). If 
there is no lower bound attribute, or that attribute does not reference an object, the basis type is 
the type of the upper bound or count attribute (if either of them references an object). If there is 
no upper bound or count attribute, or neither references an object, the type is assumed to be the 
same type, in the source language of the compilation unit containing the subrange entry, as a 
signed integer with the same size as an address on the target machine.  


If the subrange type occurs as the description of a dimension of an array type, and the stride for 
that dimension is different than what would otherwise be determined, then the subrange type 
entry has either a DW_AT_byte_stride or DW_AT_bit_stride attribute which specifies the 
separation between successive elements along the dimension as described in Section 2.19. The 
value of the DW_AT_bit_stride attribute is interpreted as bits and the value of the 
DW_AT_byte_stride attribute is interpreted as bytes. 


Note that the stride can be negative. 


The name DW_AT_byte_stride replaces the name DW_AT_stride which is defined in DWARF 
Version 2. The name DW_AT_stride may be used as an alias for DW_AT_byte_stride but use of 
DW_AT_stride is deprecated. 


5.13 Pointer to Member Type Entries 


In C++, a pointer to a data or function member of a class or structure is a unique type.  


A debugging information entry representing the type of an object that is a pointer to a structure 
or class member has the tag DW_TAG_ptr_to_member_type.  







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 85 


If the pointer to member type has a name, the pointer to member entry has a DW_AT_name 
attribute, whose value is a null-terminated string containing the type name as it appears in the 
source program.  


The pointer to member entry has a DW_AT_type attribute to describe the type of the class or 
structure member to which objects of this type may point.  


The pointer to member entry also has a DW_AT_containing_type attribute, whose value is a 
reference to a debugging information entry for the class or structure to whose members objects 
of this type may point.  


Finally, the pointer to member entry has a DW_AT_use_location attribute whose value is a 
location description that computes the address of the member of the class to which the pointer to 
member entry points (the value is meaningless if the pointer to member does not currently point 
to anything).  


The method used to find the address of a given member of a class or structure is common to any 
instance of that class or structure and to any instance of the pointer or member type. The method 
is thus associated with the type entry, rather than with each instance of the type.  


The DW_AT_use_location expression must be used in conjunction with the location expressions 
for a particular object of the given pointer to member type and for a particular structure or class 
instance. The DW_AT_use_location attribute expects two values to be pushed onto the location 
expression stack before the DW_AT_use_location expression is evaluated. The first value 
pushed is the value of the pointer to member object itself. The second value pushed is the base 
address of the entire structure or union instance containing the member whose address is being 
calculated.  


For an expression such as 


object.*mbr_ptr 


 where mbr_ptr has some pointer to member type, a debugger should:  


1. Push the value of mbr_ptr onto the location expression stack. 


2. Push the base address of object onto the location expression stack. 


3. Evaluate the DW_AT_use_location expression given in the type of mbr_ptr. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 86  December 20, 2005 


5.14 File Type Entries 


Some languages, such as Pascal, provide a first class data type to represent files.  


A file type is represented by a debugging information entry with the tag DW_TAG_file_type. If 
the file type has a name, the file type entry has a DW_AT_name attribute, whose value is a null-
terminated string containing the type name as it appears in the source program.  


The file type entry has a DW_AT_type attribute describing the type of the objects contained in 
the file.  


The file type entry also has a DW_AT_byte_size attribute, whose value (see Section 2.19) is the 
size in bytes of an instance of this file type.  


5.15 Dynamic Type Properties  


5.15.1 Data Location 


Some languages may represent objects using descriptors to hold information, including a 
location and/or run-time parameters, about the data that represents the value for that object.  


The DW_AT_data_location attribute may be used with any type that provides one or more levels 
of hidden indirection and/or run-time parameters in its representation. Its value is a location 
expression. The result of evaluating this expression yields the address of the data for an object. 
When this attribute is omitted, the address of the data is the same as the address of the object. 


This location expression will typically begin with DW_OP_push_object_address which loads the 
address of the object which can then serve as a descriptor in subsequent calculation. For an 
example using DW_AT_data_location for a Fortran 90 array, see Appendix D.2.1. 


5.15.2 Allocation and Association Status 


Some languages, such as Fortran 90, provide types whose values may be dynamically allocated 
or associated with a variable under explicit program control. 


The DW_AT_allocated attribute may optionally be used with any type for which objects of the 
type can be explicitly allocated and deallocated. The presence of the attribute indicates that 
objects of the type are allocatable and deallocatable. The value of the attribute (see below) 
specifies whether an object of the type is currently allocated or not. 


The DW_AT_associated attribute may optionally be used with any type for which objects of the 
type can be dynamically associated with other objects. The presence of the attribute indicates 
that objects of the type can be associated. The value of the attribute (see below) indicates 
whether an object of the type is currently associated or not. 







 TYPE ENTRIES 
 
 


 
 
December 20, 2005  Page 87 


While these attributes are defined specifically with Fortran 90 ALLOCATABLE and POINTER 
types in mind, usage is not limited to just that language.  


The value of these attributes is determined as described in Section 2.19. 


A non-zero value is interpreted as allocated or associated, and zero is interpreted as not allocated 
or not associated. 


For Fortran 90, if the DW_AT_associated attribute is present, the type has the POINTER 
property where either the parent variable is never associated with a dynamic object or the 
implementation does not track whether the associated object is static or dynamic. If the 
DW_AT_allocated attribute is present and the DW_AT_associated attribute is not, the type has 
the ALLOCATABLE property. If both attributes are present, then the type should be assumed to 
have the POINTER property (and not ALLOCATABLE); the DW_AT_allocated attribute may 
then be used to indicate that the association status of the object resulted from execution of an 
ALLOCATE statement rather than pointer assignment. 


For examples using DW_AT_allocated for Ada and Fortran 90 arrays, see Appendix D.2. 


5.16 DWARF Procedures 


A DWARF procedure is represented by any kind of debugging information entry that has a 
DW_AT_location attribute. If a suitable entry is not otherwise available, a DWARF procedure 
can be represented using a debugging information entry with the tag 
DW_TAG_dwarf_procedure. 


A DWARF procedure is called by a DW_OP_call2, DW_OP_call4 or DW_OP_call_ref 
DWARF expression operator (see Section 2.5.1.5). 


 


 


 


 


 


 


 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 88  December 20, 2005 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 89  December 20, 2005 


6 OTHER DEBUGGING INFORMATION 
This section describes debugging information that is not represented in the form of debugging 
information entries and is not contained within the .debug_info section. 


In the descriptions of that follow, the following terms are used to specify the representation of 
DWARF sections: 


• Initial length, section offset and section length, which are defined in Sections 7.2.2 and 7.4. 


• Sbyte, ubyte, uhalf, and uword, which are defined in Section 7.26. 


6.1 Accelerated Access 


A debugger frequently needs to find the debugging information for a program entity defined 
outside of the compilation unit where the debugged program is currently stopped. Sometimes it 
will know only the name of the entity; sometimes only the address. To find the debugging 
information associated with a global entity by name, using the DWARF debugging information 
entries alone, a debugger would need to run through all entries at the highest scope within each 
compilation unit.  


Similarly, in languages in which the name of a type is guarenteed to always refer to the same 
concrete type (such as C++), a compiler may choose to elide type definitions in all compilation 
units except one. In this case a debugger needs a rapid way of locating the concrete type 
definition by name. As with the definition of global data objects, this would require a search of 
all the top level type definitions of all compilation units in a program. 


For lookup by address, for a subroutine, a debugger can use the low and high pc attributes of the 
compilation unit entries to quickly narrow down the search, but these attributes only cover the 
range of addresses for the text associated with a compilation unit entry. To find the debugging 
information associated with a data object, an exhaustive search would be needed. Furthermore, 
any search through debugging information entries for different compilation units within a large 
program would potentially require the access of many memory pages, probably hurting 
debugger performance.  


To make lookups of program entities (data objects, functions and types) by name or by address 
faster, a producer of DWARF information may provide three different types of tables containing 
information about the debugging information entries owned by a particular compilation unit 
entry in a more condensed format.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 90  December 20, 2005 


6.1.1 Lookup by Name 


For lookup by name, two tables are maintained in separate object file sections called 
.debug_pubnames for objects and functions, and .debug_pubtypes for types. Each table 
consists of sets of variable length entries, each set describing the names of global objects and 
functions, or global types, respectively, whose definitions are represented by debugging 
information entries owned by a single compilation unit. 


C++ member functions with a definition in the class declaration are definitions in every 
compilation unit containing the class declaration, but if there is no concrete out-of-line instance 
there is no need to have a .debug_pubnames entry for the member function. 


Each set begins with a header containing four values:  


1. unit_length (initial length) 


The length of the entries for that set, not including the length field itself (see Section 7.2.2). 


2. version (uhalf) 


A version number (see Appendix F). This number is specific to the name lookup table and is 
independent of the DWARF version number. 


3. debug_info_offset (section offset) 


The offset from the beginning of the .debug_info section of the compilation unit header 
referenced by the set. 


4. debug_info_length (section length) 


The size in bytes of the contents of the .debug_info section generated to represent that 
compilation unit. 


This header is followed by a variable number of offset/name pairs. Each pair consists of the 
section offset from the beginning of the compilation unit corresponding to the current set to the 
debugging information entry for the given object, followed by a null-terminated character string 
representing the name of the object as given by the DW_AT_name attribute of the referenced 
debugging entry. Each set of names is terminated by an offset field containing zero (and no 
following string).  


In the case of the name of a function member or static data member of a C++ structure, class or 
union, the name presented in the .debug_pubnames section is not the simple name given by the 
DW_AT_name attribute of the referenced debugging entry, but rather the fully qualified name of 
the data or function member.  







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 91 


6.1.2 Lookup by Address 


For lookup by address, a table is maintained in a separate object file section called 
.debug_aranges. The table consists of sets of variable length entries, each set describing the 
portion of the program’s address space that is covered by a single compilation unit.  


Each set begins with a header containing five values:  


1. unit_length (initial length) 


The length of the entries for that set, not including the length field itself (see Section 7.2.2). 


2. version (uhalf) 


A version number (see Appendix F). This number is specific to the address lookup table and 
is independent of the DWARF version number. 


3. debug_info_offset (section offset) 


The offset from the beginning of the .debug_info section of the compilation unit header 
referenced by the set. 


4. address_size (ubyte) 


The size of an address in bytes on the target architecture. For segmented addressing, this is 
the size of the offset portion of the address.  


5. segment_size (ubyte) 


The size of a segment descriptor in bytes on the target architecture. If the target system uses a 
flat address space, this value is 0.  


This header is followed by a variable number of address range descriptors. Each descriptor is a 
pair consisting of the beginning address of a range of text or data covered by some entry owned 
by the corresponding compilation unit, followed by the non-zero length of that range. A 
particular set is terminated by an entry consisting of two zeroes. By scanning the table, a 
debugger can quickly decide which compilation unit to look in to find the debugging information 
for an object that has a given address.  


If the range of addresses covered by the text and/or data of a compilation unit is not contiguous, 
then there may be multiple address range descriptors for that compilation unit. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 92  December 20, 2005 


6.2 Line Number Information 


A source-level debugger will need to know how to associate locations in the source files with the 
corresponding machine instruction addresses in the executable object or the shared objects used 
by that executable object. Such an association would make it possible for the debugger user to 
specify machine instruction addresses in terms of source locations. This would be done by 
specifying the line number and the source file containing the statement. The debugger can also 
use this information to display locations in terms of the source files and to single step from line 
to line, or statement to statement.  


As mentioned in Section 3.1.1, the line number information generated for a compilation unit is 
represented in the .debug_line section of an object file and is referenced by a corresponding 
compilation unit debugging information entry in the .debug_info section.  


Some computer architectures employ more than one instruction set (for example, the ARM and 
MIPS architectures support a 32-bit as well as a 16-bit instruction set). Because the instruction 
set is a function of the program counter, it is convenient to encode the applicable instruction set 
in the .debug_line section as well. 


If space were not a consideration, the information provided in the .debug_line section could be 
represented as a large matrix, with one row for each instruction in the emitted object code. The 
matrix would have columns for:  


• the source file name 


• the source line number 


• the source column number  


• whether this instruction is the beginning of a source statement  


• whether this instruction is the beginning of a basic block 


• and so on 


Such a matrix, however, would be impractically large. We shrink it with two techniques. First, 
we delete from the matrix each row whose file, line and source column information is identical 
with that of its predecessors. Any deleted row would never be the beginning of a source 
statement. Second, we design a byte-coded language for a state machine and store a stream of 
bytes in the object file instead of the matrix. This language can be much more compact than the 
matrix. When a consumer of the line number information executes, it must “run” the state 
machine to generate the matrix for each compilation unit it is interested in. The concept of an 







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 93 


encoded matrix also leaves room for expansion. In the future, columns can be added to the 
matrix to encode other things that are related to individual instruction addresses. 


When the set of addresses of a compilation unit cannot be described as a single contiguous 
range, there will be a separate matrix for each contiguous subrange. 


6.2.1 Definitions 


The following terms are used in the description of the line number information format: 


state machine The hypothetical machine used by a consumer of the line number 
information to expand the byte-coded instruction stream into a matrix of 
line number information.  


line number program A series of byte-coded line number information instructions representing 
one compilation unit.  


basic block A sequence of instructions where only the first instruction may be a 
branch target and only the last instruction may transfer control.  A 
procedure invocation is defined to be an exit from a basic block. 


A basic block does not necessarily correspond to a specific source code 
construct. 


sequence A series of contiguous target machine instructions. One compilation unit 
may emit multiple sequences (that is, not all instructions within a 
compilation unit are assumed to be contiguous).  


6.2.2 State Machine Registers 


The line number information state machine has the following registers:  


address The program-counter value corresponding to a machine instruction 
generated by the compiler.  


file An unsigned integer indicating the identity of the source file 
corresponding to a machine instruction.  


line An unsigned integer indicating a source line number. Lines are numbered 
beginning at 1. The compiler may emit the value 0 in cases where an 
instruction cannot be attributed to any source line.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 94  December 20, 2005 


column An unsigned integer indicating a column number within a source line. 
Columns are numbered beginning at 1. The value 0 is reserved to indicate 
that a statement begins at the “left edge” of the line.  


is_stmt A boolean indicating that the current instruction is a recommended 
breakpoint location. A recommended breakpoint location is intended to 
"represent" a line, a statement and/or a semantically distinct subpart of a 
statement.  


basic_block A boolean indicating that the current instruction is the beginning of a basic 
block.  


end_sequence A boolean indicating that the current address is that of the first byte after 
the end of a sequence of target machine instructions.  


prologue_end A boolean indicating that the current address is one (of possibly many) 
where execution should be suspended for an entry breakpoint of a function.  


epilogue_begin A boolean indicating that the current address is one (of possibly many) 
where execution should be suspended for an exit breakpoint of a function.  


isa An unsigned integer whose value encodes the applicable instruction set 
architecture for the current instruction.  


The encoding of instruction sets should be shared by all users of a given 
architecture. It is recommended that this encoding be defined by the ABI 
authoring committee for each architecture.  


At the beginning of each sequence within a line number program, the state of the registers is:  
address          0 
file             1 
line             1 
column           0 
is_stmt          determined by default_is_stmt in the line number program header 
basic_block      “false” 
end_sequence     “false” 
prologue_end     “false” 
epilogue_begin   “false” 
isa              0 
The value 0 specifies that the instruction set is the architecturally determined default instruction 
set. This may be fixed by the ABI, or it may be specified by other means, for example, the object 
file description. 







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 95 


6.2.3 Line Number Program Instructions 


The state machine instructions in a line number program belong to one of three categories:  


special opcodes These have a ubyte opcode field and no operands. Most of the instructions 
in a line number program are special opcodes.  


standard opcodes These have a ubyte opcode field which may be followed by zero or more 
LEB128 operands (except for DW_LNS_fixed_advance_pc, see below). 
The opcode implies the number of operands and their meanings, but the 
line number program header also specifies the number of operands for 
each standard opcode.  


extended opcodes These have a multiple byte format. The first byte is zero; the next bytes 
are an unsigned LEB128 integer giving the number of bytes in the 
instruction itself (does not include the first zero byte or the size). The 
remaining bytes are the instruction itself (which begins with a ubyte 
extended opcode).  


6.2.4 The Line Number Program Header 


The optimal encoding of line number information depends to a certain degree upon the 
architecture of the target machine. The line number program header provides information used 
by consumers in decoding the line number program instructions for a particular compilation unit 
and also provides information used throughout the rest of the line number program.  


The line number program for each compilation unit begins with a header containing the 
following fields in order:  


1. unit_length (initial length) 


The size in bytes of the line number information for this compilation unit, not including the 
unit_length field itself (see Section 7.2.2). 


2. version (uhalf)  


A version number (see Appendix F). This number is specific to the line number information 
and is independent of the DWARF version number. 


3. header_length 


The number of bytes following the header_length field to the beginning of the first byte of 
the line number program itself. In the 32-bit DWARF format, this is a 4-byte unsigned 
length; in the 64-bit DWARF format, this field is an 8-byte unsigned length (see Section 7.4). 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 96  December 20, 2005 


4. minimum_instruction_length (ubyte)  


The size in bytes of the smallest target machine instruction. Line number program opcodes 
that alter the address register first multiply their operands by this value.  


5. default_is_stmt (ubyte)  


The initial value of the is_stmt register. 


A simple approach to building line number information when machine instructions are 
emitted in an order corresponding to the source program is to set default_is_stmt to “true” 
and to not change the value of the is_stmt register within the line number program. One 
matrix entry is produced for each line that has code generated for it. The effect is that every 
entry in the matrix recommends the beginning of each represented line as a breakpoint 
location. This is the traditional practice for unoptimized code. 


A more sophisticated approach might involve multiple entries in the matrix for a line 
number; in this case, at least one entry (often but not necessarily only one) specifies a 
recommended breakpoint location for the line number. DW_LNS_negate_stmt opcodes in 
the line number program control which matrix entries constitute such a recommendation and 
default_is_stmt might be either “true” or “false”. This approach might be used as part of 
support for debugging optimized code. 


6. line_base (sbyte)  


This parameter affects the meaning of the special opcodes. See below.  


7. line_range (ubyte)  


This parameter affects the meaning of the special opcodes. See below.  


8. opcode_base (ubyte)  


The number assigned to the first special opcode. 


Opcode base is typically one greater than the highest-numbered standard opcode defined for 
the specified version of the line number information (12 in DWARF Version 3, 9 in DWARF 
Version 2). If opcode_base is less than the typical value, then standard opcode numbers 
greater than or equal to the opcode base are not used in the line number table of this unit 
(and the codes are treated as special opcodes). If opcode_base is greater than the typical 
value, then the numbers between that of the highest standard opcode and the first special 
opcode (not inclusive) are used for vendor specific extensions. 







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 97 


9. standard_opcode_lengths (array of ubyte)  


This array specifies the number of LEB128 operands for each of the standard opcodes. The 
first element of the array corresponds to the opcode whose value is 1, and the last element 
corresponds to the opcode whose value is opcode_base - 1. By increasing opcode_base, 
and adding elements to this array, new standard opcodes can be added, while allowing 
consumers who do not know about these new opcodes to be able to skip them. 


Codes for vendor specific extensions, if any, are described just like standard opcodes. 


10. include_directories (sequence of path names)  


The sequence contains an entry for each path that was searched for included source files in 
this compilation. (The paths include those directories specified explicitly by the user for the 
compiler to search and those the compiler searches without explicit direction). Each path 
entry is either a full path name or is relative to the current directory of the compilation. The 
current directory of the compilation is understood to be the first entry and is not explicitly 
represented. Each entry is a null-terminated string containing a full path name. The last entry 
is followed by a single null byte.  


11. file_names (sequence of file entries)  


The sequence contains an entry for each source file that contributed to the line number 
information for this compilation unit or is used in other contexts, such as in a declaration 
coordinate or a macro file inclusion. Each entry consists of the following values: 


• A null-terminated string containing the file name. 


• An unsigned LEB128 number representing the directory index of the directory in which 
the file was found. 


• An unsigned LEB128 number representing the (implementation-defined) time of last 
modification for the file. 


• An unsigned LEB128 number representing the length in bytes of the file. 


A compiler may choose to emit LEB128(0) for the time and length fields to indicate that this 
information is not available. The last entry is followed by a single null byte.  


The directory index represents an entry in the include_directories section. The index is 
LEB128(0) if the file was found in the current directory of the compilation, LEB128(1) if it 
was found in the first directory in the include_directories section, and so on. The 
directory index is ignored for file names that represent full path names.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 98  December 20, 2005 


The line number program assigns numbers to each of the file entries in order, beginning with 
1, and uses those numbers instead of file names in the file register.  


A compiler may generate a single null byte for the file names field and define file names 
using the extended opcode DW_LNE_define_file.  


6.2.5 The Line Number Program 


As stated before, the goal of a line number program is to build a matrix representing one 
compilation unit, which may have produced multiple sequences of target-machine instructions. 
Within a sequence, addresses may only increase. (Line numbers may decrease in cases of 
pipeline scheduling or other optimization.)  


6.2.5.1 Special Opcodes 


Each ubyte special opcode has the following effect on the state machine:  


1. Add a signed integer to the line register.  


2. Multiply an unsigned integer by the minimum_instruction_length field of the line number 
program header and add the result to the address register.  


3. Append a row to the matrix using the current values of the state machine registers.  


4. Set the basic_block register to “false.”  


5. Set the prologue_end register to “false.”  


6. Set the epilogue_begin register to “false.”  


All of the special opcodes do those same six things; they differ from one another only in what 
values they add to the line and address registers.  


Instead of assigning a fixed meaning to each special opcode, the line number program uses 
several parameters in the header to configure the instruction set. There are two reasons for this. 
First, although the opcode space available for special opcodes now ranges from 13 through 255, 
the lower bound may increase if one adds new standard opcodes. Thus, the opcode_base field of 
the line number program header gives the value of the first special opcode. Second, the best 
choice of special-opcode meanings depends on the target architecture. For example, for a RISC 
machine where the compiler-generated code interleaves instructions from different lines to 
schedule the pipeline, it is important to be able to add a negative value to the line register to 
express the fact that a later instruction may have been emitted for an earlier source line. For a 
machine where pipeline scheduling never occurs, it is advantageous to trade away the ability to 
decrease the line register (a standard opcode provides an alternate way to decrease the line 







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 99 


number) in return for the ability to add larger positive values to the address register. To permit 
this variety of strategies, the line number program header defines a line_base field that 
specifies the minimum value which a special opcode can add to the line register and a 
line_range field that defines the range of values it can add to the line register.  


A special opcode value is chosen based on the amount that needs to be added to the line and 
address registers. The maximum line increment for a special opcode is the value of the 
line_base field in the header, plus the value of the line_range field, minus 1 (line base + 
line range - 1). If the desired line increment is greater than the maximum line increment, a 
standard opcode must be used instead of a special opcode. The “address advance” is calculated 
by dividing the desired address increment by the minimum_instruction_length field from the 
header. The special opcode is then calculated using the following formula:  
   opcode = (desired line increment - line_base) +  
                (line_range * address advance) + opcode_base 


If the resulting opcode is greater than 255, a standard opcode must be used instead.  


To decode a special opcode, subtract the opcode_base from the opcode itself to give the 
adjusted opcode. The amount to increment the address register is the result of the adjusted 
opcode divided by the line_range multiplied by the minimum_instruction_length field 
from the header. That is, 
    address increment =  
        (adjusted opcode / line_range) * minimim_instruction_length 


The amount to increment the line register is the line_base plus the result of the adjusted 
opcode modulo the line_range. That is,  


   line increment = line_base + (adjusted opcode % line_range) 


As an example, suppose that the opcode_base is 16, line_base is -1 and line_range is 4. This 
means that we can use a special opcode whenever two successive rows in the matrix have source 
line numbers differing by any value within the range [-1, 2] (and, because of the limited number 
of opcodes available, when the difference between addresses is within the range [0, 59]).  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 100  December 20, 2005 


The opcode mapping would be: 
 


 Opcode Line advance Address advance 


16 
17 
18 
19 
20 
21 
22 
23 
… 


253 
254 
255 


-1 
0 
1 
2 
–1 
0 
1 
2 
… 
0 
1 
2 


0 
0 
0 
0 
1 
1 
1 
1 
… 
59 
59 
59 


 


There is no requirement that the expression 255 - line_base + 1 be an integral multiple of 
line_range.  


6.2.5.2 Standard Opcodes 


There are currently 12 standard ubyte opcodes. In the future, additional opcodes may be defined 
by setting the opcode_base field in the line number program header to a value greater than 13. 
The applicable operands and the actions performed by these opcodes are as follows: 


1. DW_LNS_copy 


The DW_LNS_copy opcode takes no operands. It appends a row to the matrix using the 
current values of the state-machine registers. Then it sets the basic_block, prologue_end 
and epilogue_begin registers to “false.”  


2. DW_LNS_advance_pc  


The DW_LNS_advance_pc opcode takes a single unsigned LEB128 operand, multiplies it by 
the minimum_instruction_length field of the header, and adds the result to the address 
register of the state machine.  







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 101 


3. DW_LNS_advance_line  


The DW_LNS_advance_line opcode takes a single signed LEB128 operand and adds that 
value to the line register of the state machine.  


4. DW_LNS_set_file  


The DW_LNS_set_file opcode takes a single unsigned LEB128 operand and stores it in the 
file register of the state machine.  


5. DW_LNS_set_column  


The DW_LNS_set_column opcode takes a single unsigned LEB128 operand and stores it in 
the column register of the state machine.  


6. DW_LNS_negate_stmt 


The DW_LNS_negate_stmt opcode takes no operands. It sets the is_stmt register of the 
state machine to the logical negation of its current value.  


7. DW_LNS_set_basic_block 


The DW_LNS_set_basic_block opcode takes no operands. It sets the basic_block register 
of the state machine to “true.”  


8. DW_LNS_const_add_pc 


The DW_LNS_const_add_pc opcode takes no operands. It multiplies the address increment 
value corresponding to special opcode 255 by the minimum_instruction_length field of 
the header, and adds the result to the address register of the state machine.  


When the line number program needs to advance the address by a small amount, it can use a 
single special opcode, which occupies a single byte. When it needs to advance the address by 
up to twice the range of the last special opcode, it can use DW_LNS_const_add_pc followed 
by a special opcode, for a total of two bytes. Only if it needs to advance the address by more 
than twice that range will it need to use both DW_LNS_advance_pc and a special opcode, 
requiring three or more bytes.  


9. DW_LNS_fixed_advance_pc 


The DW_LNS_fixed_advance_pc opcode takes a single uhalf (unencoded) operand and adds 
it to the address register of the state machine. This is the only standard opcode whose 
operand is not a variable length number. It also does not multiply the operand by the 
minimum_instruction_length field of the header. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 102  December 20, 2005 


Existing assemblers cannot emit DW_LNS_advance_pc or special opcodes because they 
cannot encode LEB128 numbers or judge when the computation of a special opcode 
overflows and requires the use of DW_LNS_advance_pc. Such assemblers, however, can use 
DW_LNS_fixed_advance_pc instead, sacrificing compression.  


10. DW_LNS_set_prologue_end 


The DW_LNS_set_prologue_end opcode takes no operands. It sets the prologue_end 
register to “true”. 


When a breakpoint is set on entry to a function, it is generally desirable for execution to be 
suspended, not on the very first instruction of the function, but rather at a point after the 
function's frame has been set up, after any language defined local declaration processing has 
been completed, and before execution of the first statement of the function begins. Debuggers 
generally cannot properly determine where this point is. This command allows a compiler to 
communicate the location(s) to use. 


In the case of optimized code, there may be more than one such location; for example, the 
code might test for a special case and make a fast exit prior to setting up the frame.  


Note that the function to which the prologue end applies cannot be directly determined from 
the line number information alone; it must be determined in combination with the subroutine 
information entries of the compilation (including inlined subroutines). 


11. DW_LNS_set_epilogue_begin 


The DW_LNS_set_epilogue_begin opcode takes no operands. It sets the epilogue_begin 
register to “true”. 


When a breakpoint is set on the exit of a function or execution steps over the last executable 
statement of a function, it is generally desirable to suspend execution after completion of the 
last statement but prior to tearing down the frame (so that local variables can still be 
examined). Debuggers generally cannot properly determine where this point is. This 
command allows a compiler to communicate the location(s) to use.  


Note that the function to which the epilogue end applies cannot be directly determined from 
the line number information alone; it must be determined in combination with the subroutine 
information entries of the compilation (including inlined subroutines). 


In the case of a trivial function, both prologue end and epilogue begin may occur at the same 
address. 







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 103 


12. DW_LNS_set_isa 


The DW_LNS_set_isa opcode takes a single unsigned LEB128 operand and stores that value 
in the isa register of the state machine.  


6.2.5.3 Extended Opcodes 


There are three extended opcodes currently defined. The first byte following the length field of 
the encoding for each contains a sub-opcode.  


1. DW_LNE_end_sequence 


The DW_LINE_end_sequence opcode takes no operands. It sets the end_sequence register 
of the state machine to “true” and appends a row to the matrix using the current values of the 
state-machine registers. Then it resets the registers to the initial values specified above (see 
Section 6.2.2). Every line number program sequence must end with a 
DW_LNE_end_sequence instruction which creates a row whose address is that of the byte 
after the last target machine instruction of the sequence.  


2. DW_LNE_set_address 


The DW_LNE_set_address opcode takes a single relocatable address as an operand. The size 
of the operand is the size appropriate to hold an address on the target machine. It sets the 
address register to the value given by the relocatable address.  


All of the other line number program opcodes that affect the address register add a delta to 
it. This instruction stores a relocatable value into it instead.  


3. DW_LNE_define_file 


The DW_LNE_define_file opcode takes four operands: 


1. A null-terminated string containing a source file name.  


2. An unsigned LEB128 number representing the directory index of the directory in which 
the file was found.  


3. An unsigned LEB128 number representing the time of last modification of the file.  


4. An unsigned LEB128 number representing the length in bytes of the file.  


The time and length fields may contain LEB128(0) if the information is not available.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 104  December 20, 2005 


The directory index represents an entry in the include_directories section of the line 
number program header. The index is LEB128(0) if the file was found in the current 
directory of the compilation, LEB128(1) if it was found in the first directory in the 
include_directories section, and so on. The directory index is ignored for file names that 
represent full path names.  


The files are numbered, starting at 1, in the order in which they appear; the names in the 
header come before names defined by the DW_LNE_define_file instruction. These numbers 
are used in the file register of the state machine.  


Appendix D.4 gives some sample line number programs.  


6.3 Macro Information 


Some languages, such as C and C++, provide a way to replace text in the source program with 
macros defined either in the source file itself, or in another file included by the source file. 
Because these macros are not themselves defined in the target language, it is difficult to 
represent their definitions using the standard language constructs of DWARF. The debugging 
information therefore reflects the state of the source after the macro definition has been 
expanded, rather than as the programmer wrote it. The macro information table provides a way 
of preserving the original source in the debugging information.  


As described in Section 3.1, the macro information for a given compilation unit is represented in 
the .debug_macinfo section of an object file. The macro information for each compilation unit 
is represented as a series of “macinfo” entries. Each macinfo entry consists of a “type code” and 
up to two additional operands. The series of entries for a given compilation unit ends with an 
entry containing a type code of 0.  


6.3.1 Macinfo Types 


The valid macinfo types are as follows:  


DW_MACINFO_define A macro definition.  


DW_MACINFO_undef A macro undefinition.  


DW_MACINFO_start_file The start of a new source file inclusion.  


DW_MACINFO_end_file The end of the current source file inclusion.  


DW_MACINFO_vendor_ext Vendor specific macro information directives.  







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 105 


6.3.1.1 Define and Undefine Entries 


All DW_MACINFO_define and DW_MACINFO_undef entries have two operands. The first 
operand encodes the line number of the source line on which the relevant defining or undefining 
pre-processor directives appeared.  


The second operand consists of a null-terminated character string. In the case of a 
DW_MACINFO_undef entry, the value of this string will be simply the name of the pre- 
processor symbol that was undefined at the indicated source line.  


In the case of a DW_MACINFO_define entry, the value of this string will be the name of the 
pre-processor symbol that was defined at the indicated source line, followed immediately by the 
macro formal parameter list including the surrounding parentheses (in the case of a function-like 
macro) followed by the definition string for the macro. If there is no formal parameter list, then 
the name of the defined macro is followed directly by its definition string.  


In the case of a function-like macro definition, no whitespace characters should appear between 
the name of the defined macro and the following left parenthesis. Also, no whitespace characters 
should appear between successive formal parameters in the formal parameter list. (Successive 
formal parameters are, however, separated by commas.) Also, exactly one space character should 
separate the right parenthesis that terminates the formal parameter list and the following 
definition string.  


In the case of a “normal” (i.e. non-function-like) macro definition, exactly one space character 
should separate the name of the defined macro from the following definition text.  


6.3.1.2 Start File Entries 


Each DW_MACINFO_start_file entry also has two operands. The first operand encodes the line 
number of the source line on which the inclusion pre-processor directive occurred.  


The second operand encodes a source file name index. This index corresponds to a file number 
in the line number information table for the relevant compilation unit. This index indicates 
(indirectly) the name of the file that is being included by the inclusion directive on the indicated 
source line.  


6.3.1.3 End File Entries 


A DW_MACINFO_end_file entry has no operands. The presence of the entry marks the end of 
the current source file inclusion.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 106  December 20, 2005 


6.3.1.4 Vendor Extension Entries 


A DW_MACINFO_vendor_ext entry has two operands. The first is a constant. The second is a 
null-terminated character string. The meaning and/or significance of these operands is 
intentionally left undefined by this specification.  


A consumer must be able to totally ignore all DW_MACINFO_vendor_ext entries that it does 
not understand.  


6.3.2 Base Source Entries 


In addition to producing a matched pair of DW_MACINFO_start_file and 
DW_MACINFO_end_file entries for each inclusion directive actually processed during 
compilation, a producer should generate such a matched pair also for the “base” source file 
submitted to the compiler for compilation. If the base source file for a compilation is submitted 
to the compiler via some means other than via a named disk file (e.g. via the standard input 
stream on a UNIX system) then the compiler should still produce this matched pair of 
DW_MACINFO_start_file and DW_MACINFO_end_file entries for the base source file, 
however, the file name indicated (indirectly) by the DW_MACINFO_start_file entry of the pair 
should designate a line number information file name entry consisting of the string “-“ (hyphen). 


A DW_MACINFO_start_file entry representing the base source file should encode the value 0 in 
its line number operand. 


6.3.3 Macinfo Entries for Command Line Options 


In addition to producing DW_MACINFO_define and DW_MACINFO_undef entries for each of 
the define and undefine directives processed during compilation, the DWARF producer should 
generate a DW_MACINFO_define or DW_MACINFO_undef entry for each pre-processor 
symbol which is defined or undefined by some means other than via a define or undefine 
directive within the compiled source text. In particular, pre-processor symbol definitions and un- 
definitions which occur as a result of command line options (when invoking the compiler) should 
be represented by their own DW_MACINFO_define and DW_MACINFO_undef entries.  


All such DW_MACINFO_define and DW_MACINFO_undef entries representing compilation 
options should appear before the first DW_MACINFO_start_file entry for that compilation unit 
and should encode the value 0 in their line number operands.  


6.3.4 General Rules and Restrictions 


All macinfo entries within a .debug_macinfo section for a given compilation unit should appear 
in the same order in which the directives were processed by the compiler.  







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 107 


All macinfo entries representing command line options should appear in the same order as the 
relevant command line options were given to the compiler. In the case where the compiler itself 
implicitly supplies one or more macro definitions or un-definitions in addition to those which 
may be specified on the command line, macinfo entries should also be produced for these 
implicit definitions and un-definitions, and these entries should also appear in the proper order 
relative to each other and to any definitions or undefinitions given explicitly by the user on the 
command line.  


6.4 Call Frame Information 


Debuggers often need to be able to view and modify the state of any subroutine activation that is 
on the call stack. An activation consists of:  


• A code location that is within the subroutine. This location is either the place where the 
program stopped when the debugger got control (e.g. a breakpoint), or is a place where a 
subroutine made a call or was interrupted by an asynchronous event (e.g. a signal).  


• An area of memory that is allocated on a stack called a “call frame.” The call frame is 
identified by an address on the stack. We refer to this address as the Canonical Frame 
Address or CFA. Typically, the CFA is defined to be the value of the stack pointer at the 
call site in the previous frame (which may be different from its value on entry to the 
current frame). 


• A set of registers that are in use by the subroutine at the code location. 


Typically, a set of registers are designated to be preserved across a call. If a callee wishes to use 
such a register, it saves the value that the register had at entry time in its call frame and restores 
it on exit. The code that allocates space on the call frame stack and performs the save operation 
is called the subroutine’s prologue, and the code that performs the restore operation and 
deallocates the frame is called its epilogue. Typically, the prologue code is physically at the 
beginning of a subroutine and the epilogue code is at the end.  


To be able to view or modify an activation that is not on the top of the call frame stack, the 
debugger must “virtually unwind” the stack of activations until it finds the activation of interest. 
A debugger unwinds a stack in steps. Starting with the current activation it restores any registers 
that were preserved by the current activation and computes the predecessor’s CFA and code 
location. This has the logical effect of returning from the current subroutine to its predecessor. 
We say that the debugger virtually unwinds the stack because it preserves enough information to 
be able to “rewind” the stack back to the state it was in before it attempted to unwind it.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 108  December 20, 2005 


The unwinding operation needs to know where registers are saved and how to compute the 
predecessor’s CFA and code location. When considering an architecture-independent way of 
encoding this information one has to consider a number of special things.  


• Prologue and epilogue code is not always in distinct blocks at the beginning and end of a 
subroutine. It is common to duplicate the epilogue code at the site of each return from the 
code. Sometimes a compiler breaks up the register save/unsave operations and moves them 
into the body of the subroutine to just where they are needed.  


• Compilers use different ways to manage the call frame. Sometimes they use a frame pointer 
register, sometimes not.  


• The algorithm to compute CFA changes as you progress through the prologue and epilogue 
code. (By definition, the CFA value does not change.)  


• Some subroutines have no call frame. 


• Sometimes a register is saved in another register that by convention does not need to be 
saved.  


• Some architectures have special instructions that perform some or all of the register 
management in one instruction, leaving special information on the stack that indicates how 
registers are saved.  


• Some architectures treat return address values specially. For example, in one architecture, 
the call instruction guarantees that the low order two bits will be zero and the return 
instruction ignores those bits. This leaves two bits of storage that are available to other uses 
that must be treated specially.  


6.4.1 Structure of Call Frame Information 


DWARF supports virtual unwinding by defining an architecture independent basis for recording 
how procedures save and restore registers throughout their lifetimes. This basis must be 
augmented on some machines with specific information that is defined by either an architecture 
specific ABI authoring committee, a hardware vendor, or a compiler producer. The body 
defining a specific augmentation is referred to below as the “augmenter.”  


Abstractly, this mechanism describes a very large table that has the following structure:  
LOC CFA R0 R1 ... RN 
L0 
L1 
... 
LN 







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 109 


The first column indicates an address for every location that contains code in a program. (In 
shared objects, this is an object-relative offset.) The remaining columns contain virtual 
unwinding rules that are associated with the indicated location. The first column of the rules 
defines the rule which computes the CFA value; it may be either a register and a signed offset 
that are added together or a DWARF expression that is evaluated.  


The remaining columns are labeled by register number. This includes some registers that have 
special designation on some architectures such as the PC and the stack pointer register. (The 
actual mapping of registers for a particular architecture is performed by the augmenter.) The 
register columns contain rules that describe whether a given register has been saved and the rule 
to find the value for the register in the previous frame.  


The register rules are:  


undefined A register that has this rule has no value in the previous frame. (By 
convention, it is not preserved by a callee.)  


same value This register has not been modified from the previous frame. (By convention, 
it is preserved by the callee, but the callee has not modified it.)  


offset(N) The previous value of this register is saved at the address CFA+N where CFA 
is the current CFA value and N is a signed offset. 


val_offset(N) The previous value of this register is the value CFA+N where CFA is the 
current CFA value and N is a signed offset. 


register(R) The previous value of this register is stored in another register numbered R. 


expression(E) The previous value of this register is located at the address produced by 
executing the DWARF expression E. 


val_expression(E) The previous value of this register is the value produced by executing the 
DWARF expression E. 


architectural The rule is defined externally to this specification by the augmenter.  


This table would be extremely large if actually constructed as described. Most of the entries at 
any point in the table are identical to the ones above them. The whole table can be represented 
quite compactly by recording just the differences starting at the beginning address of each 
subroutine in the program.  


The virtual unwind information is encoded in a self-contained section called .debug_frame. 
Entries in a .debug_frame section are aligned on an addressing unit boundary and come in two 
forms: A Common Information Entry (CIE) and a Frame Description Entry (FDE).  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 110  December 20, 2005 


If the range of code addresses for a function is not contiguous, there may be multiple CIEs and 
FDEs corresponding to the parts of that function.  


A Common Information Entry holds information that is shared among many Frame Description 
Entries. There is at least one CIE in every non-empty .debug_frame section. A CIE contains the 
following fields, in order: 


1. length (initial length) 


A constant that gives the number of bytes of the CIE structure, not including the length field 
itself (where length mod <size of an address> == 0) (see Section 7.2.2).  


2. CIE_id (see Section 7.4) 


A constant that is used to distinguish CIEs from FDEs. In the 32-bit DWARF format, this is a 
4-byte unsigned integer; in the 64-bit DWARF format, this is an 8-byte unsigned integer. 


3. version (ubyte) 


A version number (see Appendix F). This number is specific to the call frame information 
and is independent of the DWARF version number.  


4. augmentation (UTF-8 string) 


A null-terminated UTF-8 string that identifies the augmentation to this CIE or to the FDEs 
that use it. If a reader encounters an augmentation string that is unexpected, then only the 
following fields can be read:  


• CIE: length, CIE_id, version, augmentation  


• FDE: length, CIE_pointer, initial_location, address_range  


If there is no augmentation, this value is a zero byte. 


Because the .debug_frame section is useful independently of any .debug_info section, the 
augmentation string always uses UTF-8 encoding.  


5. code_alignment_factor (unsigned LEB128) 


A constant that is factored out of all advance location instructions (see below).  


6. data_alignment_factor (signed LEB128) 


A constant that is factored out of all offset instructions (see below).  







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 111 


7. return_address_register (unsigned LEB128) 


An unsigned LEB128 constant that indicates which column in the rule table represents the 
return address of the function. Note that this column might not correspond to an actual 
machine register.  


In DWARF Version 2, this field is a ubyte. 


8. initial_instructions (array of ubyte) 


A sequence of rules that are interpreted to create the initial setting of each column in the 
table.  
 
The default rule for all columns before interpretation of the initial instructions is the 
undefined rule. However, an ABI authoring body or a compilation system authoring body 
may specify an alternate default value for any or all columns. 
 
In DWARF Version 2, the default value was not mentioned. 


9. padding (array of ubyte) 


Enough DW_CFA_nop instructions to make the size of this entry match the length value 
above.  


An FDE contains the following fields, in order:  


1. length (initial length) 


A constant that gives the number of bytes of the header and instruction stream for this 
function, not including the length field itself (where length mod addressing_unit_size 
== 0) (see Section 7.2.2). 


2. CIE_pointer (section offset) 


A constant offset into the .debug_frame section that denotes the CIE that is associated with 
this FDE. 


3. initial_location (target address) 


An addressing-unit sized constant indicating the address of the first location associated with 
this table entry.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 112  December 20, 2005 


4. address_range (target address) 


An addressing unit sized constant indicating the number of bytes of program instructions 
described by this entry.  


5. instructions (array of ubyte) 


A sequence of table defining instructions that are described below.  


6. padding (array of ubyte) 


Enough DW_CFA_nop instructions to make the size of this entry match the length value 
above.  


6.4.2 Call Frame Instructions 


Each call frame instruction is defined to take 0 or more operands. Some of the operands may be 
encoded as part of the opcode (see Section 7.23). The instructions are defined in the following 
sections. 


 DW_OP_call2, DW_OP_call4 and DW_OP_call_ref operators are not meaningful in an 
operand of these instructions because there is no mapping from call frame information to any 
corresponding debugging compilation unit information, thus there is no way to interpret the call 
offset. 


DW_OP_push_object_address is not meaningful in an operand of these instructions because 
there is no object context to provide a value to push. 


DW_OP_call_frame_cfa is not meaningful in an operand of these instructions because its use 
would be circular. 


6.4.2.1 Row Creation Instructions 


1. DW_CFA_set_loc 


The DW_CFA_set_loc instruction takes a single operand that represents an address. The 
required action is to create a new table row using the specified address as the location. All 
other values in the new row are initially identical to the current row. The new location value 
should always be greater than the current one.  







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 113 


2. DW_CFA_advance_loc 


The DW_CFA_advance instruction takes a single operand (encoded with the opcode) that 
represents a constant delta. The required action is to create a new table row with a location 
value that is computed by taking the current entry’s location value and adding the value of 
delta * code_alignment_factor. All other values in the new row are initially identical 
to the current row. 


3. DW_CFA_advance_loc1 


The DW_CFA_advance_loc1 instruction takes a single ubyte operand that represents a 
constant delta. This instruction is identical to DW_CFA_advance_loc except for the encoding 
and size of the delta operand.  


4. DW_CFA_advance_loc2 


The DW_CFA_advance_loc2 instruction takes a single uhalf operand that represents a 
constant delta. This instruction is identical to DW_CFA_advance_loc except for the encoding 
and size of the delta operand.  


5. DW_CFA_advance_loc4 


The DW_CFA_advance_loc4 instruction takes a single uword operand that represents a 
constant delta. This instruction is identical to DW_CFA_advance_loc except for the encoding 
and size of the delta operand.  


6.4.2.2 CFA Definition Instructions 


1. DW_CFA_def_cfa 


The DW_CFA_def_cfa instruction takes two unsigned LEB128 operands representing a 
register number and a (non-factored) offset. The required action is to define the current CFA 
rule to use the provided register and offset.  


2. DW_CFA_def_cfa_sf 


The DW_CFA_def_cfa_sf instruction takes two operands: an unsigned LEB128 value 
representing a register number and a signed LEB128 factored offset. This instruction is 
identical to DW_CFA_def_cfa except that the second operand is signed and factored.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 114  December 20, 2005 


3. DW_CFA_def_cfa_register 


The DW_CFA_def_cfa_register instruction takes a single unsigned LEB128 operand 
representing a register number. The required action is to define the current CFA rule to use 
the provided register (but to keep the old offset).  


4. DW_CFA_def_cfa_offset 


The DW_CFA_def_cfa_offset instruction takes a single unsigned LEB128 operand 
representing a (non-factored) offset. The required action is to define the current CFA rule to 
use the provided offset (but to keep the old register).  


5. DW_CFA_def_cfa_offset_sf 


The DW_CFA_def_cfa_offset_sf instruction takes a signed LEB128 operand representing a 
factored offset. This instruction is identical to DW_CFA_def_cfa_offset except that the 
operand is signed and factored.  


6. DW_CFA_def_cfa_expression 


The DW_CFA_def_cfa_expression instruction takes a single operand encoded as a 
DW_FORM_block value representing a DWARF expression. The required action is to 
establish that expression as the means by which the current CFA is computed.  


The DW_OP_call2, DW_OP_call4, DW_OP_call_ref DW_OP_push_object_address and 
DW_OP_call_frame_cfa DWARF operators (see Section 2.5.1) cannot be used in such a 
DWARF expression. 


6.4.2.3 Register Rule Instructions 


1. DW_CFA_undefined 


The DW_CFA_undefined instruction takes a single unsigned LEB128 operand that 
represents a register number. The required action is to set the rule for the specified register to 
“undefined.”  


2. DW_CFA_same_value 


The DW_CFA_same_value instruction takes a single unsigned LEB128 operand that 
represents a register number. The required action is to set the rule for the specified register to 
“same value.”  







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 115 


3. DW_CFA_offset 


The DW_CFA_offset instruction takes two operands: a register number (encoded with the 
opcode) and an unsigned LEB128 constant representing a factored offset. The required action 
is to change the rule for the register indicated by the register number to be an offset(N) rule 
with a value of (N = factored offset * data_alignment_factor).  


4. DW_CFA_offset_extended 


The DW_CFA_offset_extended instruction takes two unsigned LEB128 operands 
representing a register number and a factored offset. This instruction is identical to 
DW_CFA_offset except for the encoding and size of the register operand.  


5. DW_CFA_offset_extended_sf 


The DW_CFA_offset_extended_sf instruction takes two operands: an unsigned LEB128 
value representing a register number and a signed LEB128 factored offset. This instruction is 
identical to DW_CFA_offset_extended except that the second operand is signed and 
factored.  


6. DW_CFA_val_offset 


The DW_CFA_val_offset instruction takes two unsigned LEB128 operands representing a 
register number and a factored offset. The required action is to change the rule for the 
register indicated by the register number to be a val_offset(N) rule with a value of (N = 
factored offset * data_alignment_factor).  


7. DW_CFA_val_offset_sf 


The DW_CFA_val_offset_sf instruction takes two operands: an unsigned LEB128 value 
representing a register number and a signed LEB128 factored offset. This instruction is 
identical to DW_CFA_val_offset except that the second operand is signed and factored.  


8. DW_CFA_register 


The DW_CFA_register instruction takes two unsigned LEB128 operands representing 
register numbers. The required action is to set the rule for the first register to be the second 
register.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 116  December 20, 2005 


9. DW_CFA_expression 


The DW_CFA_expression instruction takes two operands: an unsigned LEB128 value 
representing a register number, and a DW_FORM_block value representing a DWARF 
expression. The required action is to change the rule for the register indicated by the register 
number to be an expression(E) rule where E is the DWARF expression. That is, the DWARF 
expression computes the address. The value of the CFA is pushed on the DWARF evaluation 
stack prior to execution of the DWARF expression.  


The DW_OP_call2, DW_OP_call4, DW_OP_call_ref, DW_OP_push_object_address and 
DW_OP_call_frame_cfa DWARF operators (see Section 2.5.1) cannot be used in such a 
DWARF expression.  


10. DW_CFA_val_expression 


The DW_CFA_val_expression instruction takes two operands: an unsigned LEB128 value 
representing a register number, and a DW_FORM_block value representing a DWARF 
expression. The required action is to change the rule for the register indicated by the register 
number to be a val_expression(E) rule where E is the DWARF expression. That is, the 
DWARF expression computes the value of the given register. The value of the CFA is 
pushed on the DWARF evaluation stack prior to execution of the DWARF expression. 


The DW_OP_call2, DW_OP_call4, DW_OP_call_ref and DW_OP_push_object_address 
DWARF operators (see Section 2.5.1) cannot be used in such a DWARF expression. 


11. DW_CFA_restore  


The DW_CFA_restore instruction takes a single operand (encoded with the opcode) that 
represents a register number. The required action is to change the rule for the indicated 
register to the rule assigned it by the initial_instructions in the CIE.  


12. DW_CFA_restore_extended 


The DW_CFA_restore_extended instruction takes a single unsigned LEB128 operand that 
represents a register number. This instruction is identical to DW_CFA_restore except for the 
encoding and size of the register operand.  







 OTHER DEBUGGING INFORMATION 
 
 


 
 
December 20, 2005  Page 117 


6.4.2.4 Row State Instructions 


The next two instructions provide the ability to stack and retrieve complete register states. They 
may be useful, for example, for a compiler that moves epilogue code into the body of a function. 


1. DW_CFA_remember_state 


The DW_CFA_remember_state instruction takes no operands. The required action is to push 
the set of rules for every register onto an implicit stack. 


2. DW_CFA_restore_state 


The DW_CFA_restore_state instruction takes no operands. The required action is to pop the 
set of rules off the implicit stack and place them in the current row. 


6.4.2.5 Padding Instruction 


1. DW_CFA_nop 


The DW_CFA_nop instruction has no operands and no required actions. It is used as padding 
to make a CIE or FDE an appropriate size.  


6.4.3 Call Frame Instruction Usage 


To determine the virtual unwind rule set for a given location (L1), one searches through the FDE 
headers looking at the initial_location and address_range values to see if L1 is contained 
in the FDE. If so, then:  


1. Initialize a register set by reading the initial_instructions field of the associated CIE.  


2. Read and process the FDE’s instruction sequence until a DW_CFA_advance_loc, 
DW_CFA_set_loc, or the end of the instruction stream is encountered.  


3. If a DW_CFA_advance_loc or DW_CFA_set_loc instruction was encountered, then compute 
a new location value (L2). If L1 >= L2 then process the instruction and go back to step 2.  


4. The end of the instruction stream can be thought of as a DW_CFA_set_loc (initial_location 
+ address_range) instruction. Unless the FDE is ill-formed, L1 should be less than L2 at this 
point.  


The rules in the register set now apply to location L1.  


For an example, see Appendix D.6.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 118  December 20, 2005 


6.4.4 Call Frame Calling Address 


When unwinding frames, consumers frequently wish to obtain the address of the instruction 
which called a subroutine. This information is not always provided. Typically, however, one of 
the registers in the virtual unwind table is the Return Address. 


If a Return Address register is defined in the virtual unwind table, and its rule is undefined (for 
example, by DW_CFA_undefined), then there is no return address and no call address, and the 
virtual unwind of stack activations is complete. 


In most cases the return address is in the same context as the calling address, but that need not 
be the case, especially if the producer knows in some way the call never will return. The context 
of the 'return address' might be on a different line, in a different lexical block, or past the end of 
the calling subroutine. If a consumer were to assume that it was in the same context as the 
calling address, the unwind might fail. 


For architectures with constant-length instructions where the return address immediately follows 
the call instruction, a simple solution is to subtract the length of an instruction from the return 
address to obtain the calling instruction. For architectures with variable-length instructions (e.g. 
x86), this is not possible. However, subtracting 1 from the return address, although not 
guaranteed to provide the exact calling address, generally will produce an address within the 
same context as the calling address, and that usually is sufficient. 


 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 119  December 20, 2005 


7 DATA REPRESENTATION 
This section describes the binary representation of the debugging information entry itself, of the 
attribute types and of other fundamental elements described above.  


7.1 Vendor Extensibility 


To reserve a portion of the DWARF name space and ranges of enumeration values for use for 
vendor specific extensions, special labels are reserved for tag names, attribute names, base type 
encodings, location operations, language names, calling conventions and call frame instructions.  


The labels denoting the beginning and end of the reserved value range for vendor specific 
extensions consist of the appropriate prefix (DW_TAG, DW_AT, DW_END, DW_ATE, 
DW_OP, DW_LANG, DW_LNE, DW_CC or DW_CFA respectively) followed by _lo_user 
or _hi_user. For example, for entry tags, the special labels are DW_TAG_lo_user and 
DW_TAG_hi_user. Values in the range between prefix_lo_user and prefix_hi_user 
inclusive, are reserved for vendor specific extensions. Vendors may use values in this range 
without conflicting with current or future system-defined values. All other values are reserved 
for use by the system. 


There may also be codes for vendor specific extensions between the number of standard line 
number opcodes and the first special line number opcode. However, since the number of 
standard opcodes varies with the DWARF version, the range for extensions is also version 
dependent. Thus, DW_LNS_lo_user and DW_LNS_hi_user symbols are not defined. 


Vendor defined tags, attributes, base type encodings, location atoms, language names, line 
number actions, calling conventions and call frame instructions, conventionally use the form 
prefix_vendor_id_name, where vendor_id is some identifying character sequence chosen so as to 
avoid conflicts with other vendors.  


To ensure that extensions added by one vendor may be safely ignored by consumers that do not 
understand those extensions, the following rules should be followed:  


1. New attributes should be added in such a way that a debugger may recognize the format of a 
new attribute value without knowing the content of that attribute value.  


2. The semantics of any new attributes should not alter the semantics of previously existing 
attributes.  


3. The semantics of any new tags should not conflict with the semantics of previously existing 
tags.  







 DWARF Debugging Information Format, Version 3 
 
 
7.2 Reserved Values 


7.2.1 Error Values 


As a convenience for consumers of DWARF information, the value 0 is reserved in the 
encodings for attribute names, attribute forms, base type encodings, location operations, 
languages, line number program opcodes, macro information entries and tag names to represent 
an error condition or unknown value. DWARF does not specify names for these reserved values, 
since they do not represent valid encodings for the given type and should not appear in DWARF 
debugging information.  


7.2.2 Initial Length Values 


An initial length field is one of the length fields that occur at the beginning of those DWARF 
sections that have a header (.debug_aranges, .debug_info, .debug_line, .debug_pubnames, 
and .debug_pubtypes) or the length field that occurs at the beginning of the CIE and FDE 
structures in the .debug_frame section. 


In an initial length field, the values 0xfffffff0 through 0xffffffff are reserved by DWARF 
to indicate some form of extension relative to DWARF Version 2; such values must not be 
interpreted as a length field. The use of one such value, 0xffffffff, is defined below (see 
Section 7.4); the use of the other values is reserved for possible future extensions. 


7.3 Executable Objects and Shared Objects 


The relocated addresses in the debugging information for an executable object are virtual 
addresses and the relocated addresses in the debugging information for a shared object are offsets 
relative to the start of the lowest segment used by that shared object.  


This requirement makes the debugging information for shared objects position independent. 
Virtual addresses in a shared object may be calculated by adding the offset to the base address 
at which the object was attached. This offset is available in the run-time linker’s data structures.  


7.4 32-Bit and 64-Bit DWARF Formats 


DWARF Version 2 provides the ability to describe programs that operate in a 64-bit address 
space environment. However, it does not make provision for a DWARF description that is larger 
than 4 GBytes, because the lengths that describe DWARF sections and values that are offsets 
into DWARF sections are all specified to be 32-bits in size. This revision adds the ability to 
support a DWARF description that is greater than 4 GBytes in size. 


DWARF Version 3 defines two closely related file formats. In the 32-bit DWARF format, all 
values that represent lengths of DWARF sections and offsets relative to the beginning of 


 
 
Page 120  December 20, 2005 







 DATA REPRESENTATION 
 
 
DWARF sections are represented using 32-bits (this is the same as defined in DWARF Version 
2). In the 64-bit DWARF format, all values that represent lengths of DWARF sections and 
offsets relative to the beginning of DWARF sections are represented using 64-bits. A special 
convention applies to the initial length field of certain DWARF sections, as well as the CIE and 
FDE structures, so that the 32-bit and 64-bit DWARF formats can coexist and be distinguished 
within a single linked object. 


The differences between the 32- and 64-bit DWARF formats are detailed in the following: 


1. In the 32-bit DWARF format, an initial length field (see Section 7.2.2) is an unsigned 32-bit 
integer (which must be less than 0xffffff00); in the 64-bit DWARF format, an initial 
length field is 96 bits in size, and has two parts: 


• The first 32-bits have the value 0xffffffff. 


• The following 64-bits contain the actual length represented as an unsigned 64-bit integer. 


This representation allows a DWARF consumer to dynamically detect that a DWARF section 
contribution is using the 64-bit format and to adapt its processing accordingly. 


2. Section offset and section length fields that occur in the headers of DWARF sections (other 
than initial length fields) are listed following. In the 32-bit DWARF format these are 32-bit 
unsigned integer values; in the 64-bit DWARF format, they are 64-bit unsigned integer 
values. 


Section Name Role 
 
.debug_aranges debug_info_offset offset in .debug_info 
.debug_frame/CIE CIE_id CIE distinguished value 
.debug_frame/FDE CIE_pointer offset in .debug_frame 
.debug_info debug_abbrev_offset offset in .debug_abbrev 
.debug_line header_length length of header itself 
.debug_pubnames debug_info_offset offset in .debug_info 
 debug_info_length length of .debug_info 
  contribution 
.debug_pubtypes debug_info_offset offset in .debug_info 
 debug_info_length length of .debug_info 
  contribution 


The CIE_id field in a CIE structure must be 64 bits because it overlays the CIE_pointer 
in a FDE structure; this implicit union must be accessed to distinguish whether a CIE or 


 
 
December 20, 2005  Page 121 







 DWARF Debugging Information Format, Version 3 
 
 


FDE is present, consequently, these two fields must exactly overlay each other (both 
offset and size). 


3. Within the body of the .debug_info section, certain forms of attribute value depend on the 
choice of DWARF format as follows. For the 32-bit DWARF format, the value is a 32-bit 
unsigned integer; for the 64-bit DWARF format, the value is a 64-bit unsigned integer. 


 Form Role 
 
DW_FORM_ref_addr offset in .debug_info 
DW_FORM_strp offset in .debug_str 
DW_OP_call_ref offset in .debug_info 


4. Within the body of the .debug_info section, certain classes of attribute value use an 
attribute value form that depends on the DWARF format as follows: in the 32-bit DWARF 
format, the lineptr, loclistptr, macptr and rangelistptr classes use form DW_FORM_data4; in 
the 64-bit DWARF format, they use form DW_FORM_data8. 


5. Within the body of the .debug_pubnames and .debug_pubtypes sections, the representation 
of the first field of each tuple (which represents an offset in the .debug_info section) 
depends on the DWARF format as follows: in the 32-bit DWARF format, this field is a 32-
bit unsigned integer; in the 64-bit DWARF format, it is a 64-bit unsigned integer. 


The 32-bit and 64-bit DWARF format conventions must not be intermixed within a single 
compilation unit. 


Attribute values and section header fields that represent addresses in the target program are not 
affected by these rules. 


A DWARF consumer that supports the 64-bit DWARF format must support executables in 
which some compilation units use the 32-bit format and others use the 64-bit format provided 
that the combination links correctly (that is, provided that there are no link-time errors due to 
truncation or overflow). (An implementation is not required to guarantee detection and reporting 
of all such errors.) 


It is expected that DWARF producing compilers will not use the 64-bit format by default. In most 
cases, the division of even very large applications into a number of executable and shared 
objects will suffice to assure that the DWARF sections within each individual linked object are 
less than 4 GBytes in size. However, for those cases where needed, the 64-bit format allows the 
unusual case to be handled as well. Even in this case, it is expected that only application 
supplied objects will need be compiled using the 64-bit format; separate 32-bit format versions 
of system supplied shared executable libraries can still be used. 


 
 
Page 122  December 20, 2005 







 DATA REPRESENTATION 
 
 
7.5 Format of Debugging Information 


For each compilation unit compiled with a DWARF Version 3 producer, a contribution is made 
to the .debug_info section of the object file. Each such contribution consists of a compilation 
unit header (see Section 7.5.1) followed by a single DW_TAG_compile_unit or 
DW_TAG_partial_unit debugging information entry, together with its children.  


Each debugging information entry begins with a code that represents an entry in a separate 
abbreviations table. This code is followed directly by a series of attribute values. The appropriate 
entry in the abbreviations table guides the interpretation of the information contained directly in 
the .debug_info section. Each compilation unit is associated with a particular abbreviation 
table, but multiple compilation units may share the same table.  


7.5.1 Compilation Unit Header 


The header for the series of debugging information entries contributed by a single compilation 
unit consists of the following information:  


1. unit_length (initial length) 


A 4-byte or 12-byte unsigned integer representing the length of the .debug_info 
contribution for that compilation unit, not including the length field itself. In the 32-bit 
DWARF format, this is a 4-byte unsigned integer (which must be less than 0xffffff00); in 
the 64-bit DWARF format, this consists of the 4-byte value 0xffffffff followed by an 8-
byte unsigned integer that gives the actual length (see Section 7.4). 


4. version (uhalf) 


A 2-byte unsigned integer representing the version of the DWARF information for the 
compilation unit (see Appendix F). For DWARF Version 3, the value in this field is 3.  


5. debug_abbrev_offset (section offset) 


A 4-byte or 8-byte unsigned offset into the .debug_abbrev section. This offset associates the 
compilation unit with a particular set of debugging information entry abbreviations. In the 
32-bit DWARF format, this is a 4-byte unsigned length; in the 64-bit DWARF format, this is 
an 8-byte unsigned length (see Section 7.4). 


6. address_size (ubyte) 


A 1-byte unsigned integer representing the size in bytes of an address on the target 
architecture. If the system uses segmented addressing, this value represents the size of the 
offset portion of an address.  


 
 
December 20, 2005  Page 123 







 DWARF Debugging Information Format, Version 3 
 
 
7.5.2 Debugging Information Entry 


Each debugging information entry begins with an unsigned LEB128 number containing the 
abbreviation code for the entry. This code represents an entry within the abbreviations table 
associated with the compilation unit containing this entry. The abbreviation code is followed by 
a series of attribute values.  


On some architectures, there are alignment constraints on section boundaries. To make it easier 
to pad debugging information sections to satisfy such constraints, the abbreviation code 0 is 
reserved. Debugging information entries consisting of only the abbreviation code 0 are 
considered null entries.  


7.5.3 Abbreviations Tables 


The abbreviations tables for all compilation units are contained in a separate object file section 
called .debug_abbrev. As mentioned before, multiple compilation units may share the same 
abbreviations table.  


The abbreviations table for a single compilation unit consists of a series of abbreviation 
declarations. Each declaration specifies the tag and attributes for a particular form of debugging 
information entry. Each declaration begins with an unsigned LEB128 number representing the 
abbreviation code itself. It is this code that appears at the beginning of a debugging information 
entry in the .debug_info section. As described above, the abbreviation code 0 is reserved for 
null debugging information entries. The abbreviation code is followed by another unsigned 
LEB128 number that encodes the entry’s tag. The encodings for the tag names are given in 
Figure 18. 


Following the tag encoding is a 1-byte value that determines whether a debugging information 
entry using this abbreviation has child entries or not. If the value is DW_CHILDREN_yes, the 
next physically succeeding entry of any debugging information entry using this abbreviation is 
the first child of that entry. If the 1-byte value following the abbreviation’s tag encoding is 
DW_CHILDREN_no, the next physically succeeding entry of any debugging information entry 
using this abbreviation is a sibling of that entry. (Either the first child or sibling entries may be 
null entries). The encodings for the child determination byte are given in Figure 19. (As 
mentioned in Section 2.3, each chain of sibling entries is terminated by a null entry.) 


Finally, the child encoding is followed by a series of attribute specifications. Each attribute 
specification consists of two parts. The first part is an unsigned LEB128 number representing the 
attribute’s name. The second part is an unsigned LEB128 number representing the attribute’s 
form. The series of attribute specifications ends with an entry containing 0 for the name and 0 for 
the form.  


 
 
Page 124  December 20, 2005 







 DATA REPRESENTATION 
 
 
The attribute form DW_FORM_indirect is a special case. For attributes with this form, the 
attribute value itself in the .debug_info section begins with an unsigned LEB128 number that 
represents its form. This allows producers to choose forms for particular attributes dynamically, 
without having to add a new entry to the abbreviations table.  


The abbreviations for a given compilation unit end with an entry consisting of a 0 byte for the 
abbreviation code.  


See Appendix D.1 for a depiction of the organization of the debugging information.  


7.5.4 Attribute Encodings 


The encodings for the attribute names are given in Figure 20. 


The attribute form governs how the value of the attribute is encoded. There are nine classes of 
form, listed below. Each class is a set of forms which have related representations and which are 
given a common interpretation according to the attribute in which the form is used. 


Some encodings are members of more than one class; in that case, the list of classes allowed by 
the applicable attribute in Figure 20 determines the class of the form. DW_FORM_data4 and 
DW_FORM_data8 may be members of classes constant, lineptr, loclistptr, macptr and 
rangelistptr. They are members of the class constant if used for the value of an attribute that 
allows class constant but not class lineptr, loclistptr, macptr or rangelistptr. They are members of 
the class lineptr, loclistptr, macptr or rangelistptr if used for the value of an attribute that allows 
one of those classes. 


In DWARF Version 2, each form belonged to exactly one class so that the classes formed a 
partition of the set of forms. Moreover, the class constant was used for some “pointers” 
(described as offsets) into other sections. In practice such offsets had to use DW_FORM_data4 
since they had to be a form that could be relocated during linking (making such “constants” not 
very constant).  


This revision introduces new classes to more clearly identify when a value is to be interpreted as 
a pointer or offset into another section. The form DW_FORM_data8 is included in these classes 
to accommodate the 64-bit DWARF format. (It would have been cleaner to introduce new forms 
to be used for such pointers by analogy with the DW_FORM_strp form, but this would not be 
upward compatible.) Since classes as such are not represented in the DWARF format (only the 
individual forms are encoded), the introduction of new or revised class descriptions does not 
affect upward compatibility. 


 
 
December 20, 2005  Page 125 







 DWARF Debugging Information Format, Version 3 
 
 
The forms DW_FORM_data4 and DW_FORM_data8 continue to be usable as constants when 
this does not conflict with their possible role as pointers. Even without them, there are no 
limitations in the value of constants that can be represented using the other forms in class 
constant (consider especially DW_FORM_sdata and DW_FORM_udata); the block forms may 
also be appropriate. 


Each possible form belongs to one or more of the following classes:  


address 


Represented as an object of appropriate size to hold an address on the target machine 
(DW_FORM_addr). The size is encoded in the compilation unit header (see Section 7.5.1). 
This address is relocatable in a relocatable object file and is relocated in an executable file or 
shared object.  


block 


Blocks come in four forms: 


A 1-byte length followed by 0 to 255 contiguous information bytes 
(DW_FORM_block1).  


A 2-byte length followed by 0 to 65,535 contiguous information bytes 
(DW_FORM_block2).  


A 4-byte length followed by 0 to 4,294,967,295 contiguous information bytes 
(DW_FORM_block4).  


An unsigned LEB128 length followed by the number of bytes specified by the length 
(DW_FORM_block). 


In all forms, the length is the number of information bytes that follow. The information bytes 
may contain any mixture of relocated (or relocatable) addresses, references to other 
debugging information entries or data bytes.  


constant 


There are six forms of constants. There are fixed length constant data forms for one, two, 
four and eight byte values (respectively, DW_FORM_data1, DW_FORM_data2, 
DW_FORM_data4, and DW_FORM_data8). There are also variable length constant data 
forms encoded using LEB128 numbers (see below). Both signed (DW_FORM_sdata) and 
unsigned (DW_FORM_udata) variable length constants are available. Note that 
DW_FORM_data4 and DW_FORM_data8 are members of class constant only if the attribute 


 
 
Page 126  December 20, 2005 







 DATA REPRESENTATION 
 
 


in question does not allow one of the classes lineptr, loclistptr, macptr or rangelistptr (see 
below). 


The data in DW_FORM_data1, DW_FORM_data2, DW_FORM_data4 and 
DW_FORM_data8 can be anything. Depending on context, it may be an offset to a 
debugging information entry, a signed integer, an unsigned integer, a floating-point constant, 
or anything else. A consumer must use context to know how to interpret the bits, which if 
they are target machine data (such as an integer or floating point constant) will be in target 
machine byte-order. 


If one of the DW_FORM_data<n> forms is used to represent a signed or unsigned integer, it 
can be hard for a consumer to discover the context necessary to determine which 
interpretation is intended. Producers are therefore strongly encouraged to use 
DW_FORM_sdata or DW_FORM_udata for signed and unsigned integers respectively, 
rather than DW_FORM_data<n>. 


flag 


A flag is represented as a single byte of data (DW_FORM_flag). If the flag has value zero, it 
indicates the absence of the attribute. If the flag has a non-zero value, it indicates the 
presence of the attribute. 


lineptr 


This is an offset into the .debug_line section. It consists of a 4- or 8-byte value which is the 
offset from the beginning of the .debug_line section to the first byte of the data making up 
the line number list for the compilation unit. It is relocatable in a relocatable object file, and 
relocated in an executable or shared object. It is either form DW_FORM_data4 or form 
DW_FORM_data8. 


loclistptr 


This is an offset into the .debug_loc section. It consists of a 4- or 8-byte value which is the 
offset from the beginning of the .debug_loc section to the first byte of the data making up 
the location list for the compilation unit. It is relocatable in a relocatable object file, and 
relocated in an executable or shared object. It is either form DW_FORM_data4 or form 
DW_FORM_data8. 


 
 
December 20, 2005  Page 127 







 DWARF Debugging Information Format, Version 3 
 
 
macptr 


This is an offset into the .debug_macinfo section. It consists of a 4- or 8-byte value which is 
the offset from the beginning of the .debug_macinfo section to the first byte of the data 
making up the macro information list for the compilation unit. It is relocatable in a 
relocatable object file, and relocated in an executable or shared object. It is either form 
DW_FORM_data4 or form DW_FORM_data8. 


rangelistptr 


This is an offset into the .debug_ranges section. It consists of a 4- or 8-byte value which is 
the offset from the beginning of the .debug_ranges section to the beginning of the non-
contiguous address ranges information for the referencing entity. It is relocatable in a 
relocatable object file and relocated in an executable or shared object. It is either form 
DW_FORM_data4 or form DW_FORM_data8. 


Because classes lineptr, loclistptr, macptr and rangelistptr share a common representation, it is 
not possible for an attribute to allow more than one of these classes. If an attribute allows both 
class constant and one of lineptr, loclistptr, macptr or rangelistptr, then DW_FORM_data4 and 
DW_FORM_data8 are interpreted as members of the latter as appropriate (not class constant). 


reference 


There are two types of reference. 


The first type of reference can identify any debugging information entry within the 
containing unit. This type of reference is an offset from the first byte of the compilation 
header for the compilation unit containing the reference. There are five forms for this type of 
reference. There are fixed length forms for one, two, four and eight byte offsets (respectively, 
DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, and DW_FORM_ref8). There is 
also an unsigned variable length offset encoded form that uses LEB128 numbers 
(DW_FORM_ref_udata). Because this type of reference is within the containing compilation 
unit no relocation of the value is required. 


 
 
Page 128  December 20, 2005 


The second type of reference can identify any debugging information entry within a program; 
in particular, it may refer to an entry in a different compilation unit from the unit containing 
the reference, and may refer to an entry in a different shared object. This type of reference 
(DW_FORM_ref_addr) is an offset from the beginning of the .debug_info section of the 
target executable or shared object; it is relocatable in a relocatable object file and frequently 
relocated in an executable file or shared object. For references from one shared object or 
static executable file to another, the relocation and identification of the target object must be 
performed by the consumer. In the 32-bit DWARF format, this offset is a 4-byte unsigned 
value; in the 64-bit DWARF format, it is an 8-byte unsigned value (see Section 7.4). 







 DATA REPRESENTATION 
 
 


A debugging information entry that may be referenced by another compilation must have a 
global symbolic name.  


For a reference from one executable or shared object to another, the reference is resolved by 
the debugger to identify the shared object or executable and the offset into that object’s 
.debug_info section in the same fashion as the run time loader, either when the debug 
information is first read, or when the reference is used.  


The use of compilation unit relative references will reduce the number of link-time 
relocations and so speed up linking. The use of the second type of references allows for the 
commonization of information, such as types, across compilation units.  


string 


A string is a sequence of contiguous non-null bytes followed by one null byte. A string may 
be represented immediately in the debugging information entry itself (DW_FORM_string), 
or may be represented as an offset into a string table contained in the .debug_str section of 
the object file (DW_FORM_strp). In the 32-bit DWARF format, the representation of a 
DW_FORM_strp value is an 4-byte unsigned offset; in the 64-bit DWARF format, it is an 
8-byte unsigned offset (see Section 7.4). 


If the DW_AT_use_UTF8 attribute is specified for the compilation unit entry, string values 
are encoded using the UTF-8 (Unicode Transformation Format-8) from the Universal 
Character Set standard (ISO/IEC 10646-1:1993). Otherwise, the string representation is 
unspecified.  


The Unicode Standard Version 3 is fully compatible with ISO/IEC 10646-1:1993. It contains 
all the same characters and encoding points as ISO/IEC 10646, as well as additional 
information about the characters and their use.  


DWARF Version 2 did not specify the representation of strings; for upward compatibility, 
this version also does not. However, the UTF-8 representation is strongly recommended.  


The form encodings are listed in Figure 21. 
 


 


 
 
December 20, 2005  Page 129 







 DWARF Debugging Information Format, Version 3 
 
 


Tag name Value 


DW_TAG_array_type 0x01 


DW_TAG_class_type 0x02 


DW_TAG_entry_point 0x03 


DW_TAG_enumeration_type 0x04 


DW_TAG_formal_parameter 0x05 


DW_TAG_imported_declaration 0x08 


DW_TAG_label 0x0a 


DW_TAG_lexical_block 0x0b 


DW_TAG_member 0x0d 


DW_TAG_pointer_type 0x0f 


DW_TAG_reference_type 0x10 


DW_TAG_compile_unit 0x11 


DW_TAG_string_type 0x12 


DW_TAG_structure_type 0x13 


DW_TAG_subroutine_type 0x15 


DW_TAG_typedef 0x16 


DW_TAG_union_type 0x17 


DW_TAG_unspecified_parameters 0x18 


DW_TAG_variant 0x19 


DW_TAG_common_block 0x1a 


 
 
Page 130  December 20, 2005 







 DATA REPRESENTATION 
 
 


Tag name Value 


DW_TAG_common_inclusion 0x1b 


DW_TAG_inheritance 0x1c 


DW_TAG_inlined_subroutine 0x1d 


DW_TAG_module 0x1e 


DW_TAG_ptr_to_member_type 0x1f 


DW_TAG_set_type 0x20 


DW_TAG_subrange_type 0x21 


DW_TAG_with_stmt 0x22 


DW_TAG_access_declaration 0x23 


DW_TAG_base_type 0x24 


DW_TAG_catch_block 0x25 


DW_TAG_const_type 0x26 


DW_TAG_constant 0x27 


DW_TAG_enumerator 0x28 


DW_TAG_file_type 0x29 


DW_TAG_friend 0x2a 


DW_TAG_namelist 0x2b 


DW_TAG_namelist_item 0x2c 


DW_TAG_packed_type 0x2d 


DW_TAG_subprogram 0x2e 


 
 
December 20, 2005  Page 131 







 DWARF Debugging Information Format, Version 3 
 
 


Tag name Value 


DW_TAG_template_type_parameter 0x2f 


DW_TAG_template_value_parameter 0x30 


DW_TAG_thrown_type 0x31 


DW_TAG_try_block 0x32 


DW_TAG_variant_part 0x33 


DW_TAG_variable 0x34 


DW_TAG_volatile_type 0x35 


DW_TAG_dwarf_procedure ‡ 0x36 


DW_TAG_restrict_type ‡ 0x37 


DW_TAG_interface_type ‡ 0x38 


DW_TAG_namespace ‡ 0x39 


DW_TAG_imported_module ‡ 0x3a 


DW_TAG_unspecified_type ‡ 0x3b 


DW_TAG_partial_unit ‡ 0x3c 


DW_TAG_imported_unit ‡ 0x3d 


DW_TAG_condition ‡ 0x3f 


 
 
Page 132  December 20, 2005 







 DATA REPRESENTATION 
 
 


Tag name Value 


DW_TAG_shared_type ‡ 0x40 


DW_TAG_lo_user 0x4080


DW_TAG_hi_user 0xffff 


‡ New in DWARF Version 3 


Figure 18. Tag encodings 


 


 


Child determination name Value


DW_CHILDREN_no 0x00 


DW_CHILDREN_yes 0x01 


Figure 19. Child determination encodings 


 


 


 
 
December 20, 2005  Page 133 


Attribute name Value Classes  


DW_AT_sibling 0x01 reference  


DW_AT_location 0x02 block, loclistptr 


DW_AT_name 0x03 string  


DW_AT_ordering 0x09 constant  


DW_AT_byte_size 0x0b block, constant, reference  


DW_AT_bit_offset 0x0c block, constant, reference  


DW_AT_bit_size 0x0d block, constant, reference  







 DWARF Debugging Information Format, Version 3 
 
 


Attribute name Value Classes  


DW_AT_stmt_list 0x10 lineptr 


DW_AT_low_pc 0x11 address 


DW_AT_high_pc 0x12 address  


DW_AT_language 0x13 constant  


DW_AT_discr 0x15 reference  


DW_AT_discr_value 0x16 constant  


DW_AT_visibility 0x17 constant  


DW_AT_import 0x18 reference  


DW_AT_string_length 0x19 block, loclistptr 


DW_AT_common_reference 0x1a reference  


DW_AT_comp_dir 0x1b string  


DW_AT_const_value 0x1c block, constant, string 


DW_AT_containing_type 0x1d reference  


DW_AT_default_value 0x1e reference  


DW_AT_inline 0x20 constant  


DW_AT_is_optional 0x21 flag  


DW_AT_lower_bound 0x22 block, constant, reference 


DW_AT_producer 0x25 string  


DW_AT_prototyped 0x27 flag  


DW_AT_return_addr 0x2a block, loclistptr 


 
 
Page 134  December 20, 2005 







 DATA REPRESENTATION 
 
 


Attribute name Value Classes  


DW_AT_start_scope 0x2c constant  


DW_AT_bit_stride 0x2e constant  


DW_AT_upper_bound 0x2f block, constant, reference 


DW_AT_abstract_origin 0x31 reference  


DW_AT_accessibility 0x32 constant  


DW_AT_address_class 0x33 constant  


DW_AT_artificial 0x34 flag  


DW_AT_base_types 0x35 reference  


DW_AT_calling_convention 0x36 constant  


DW_AT_count 0x37 block, constant, reference 


DW_AT_data_member_location 0x38 block, constant, loclistptr 


DW_AT_decl_column 0x39 constant  


DW_AT_decl_file 0x3a constant  


DW_AT_decl_line 0x3b constant  


DW_AT_declaration 0x3c flag  


DW_AT_discr_list 0x3d block  


DW_AT_encoding 0x3e constant  


DW_AT_external 0x3f flag  


DW_AT_frame_base 0x40 block, loclistptr 


DW_AT_friend 0x41 reference  


 
 
December 20, 2005  Page 135 







 DWARF Debugging Information Format, Version 3 
 
 


Attribute name Value Classes  


DW_AT_identifier_case 0x42 constant  


DW_AT_macro_info 0x43 macptr  


DW_AT_namelist_item 0x44 block  


DW_AT_priority 0x45 reference  


DW_AT_segment 0x46 block, loclistptr 


DW_AT_specification 0x47 reference  


DW_AT_static_link 0x48 block, loclistptr 


DW_AT_type 0x49 reference  


DW_AT_use_location 0x4a block, loclistptr 


DW_AT_variable_parameter 0x4b flag  


DW_AT_virtuality 0x4c constant  


DW_AT_vtable_elem_location 0x4d block, loclistptr 


DW_AT_allocated ‡ 0x4e block, constant, reference 


DW_AT_associated ‡ 0x4f block, constant, reference 


DW_AT_data_location ‡ 0x50 block 


DW_AT_byte_stride ‡ 0x51 block, constant, reference 


DW_AT_entry_pc ‡ 0x52 address 


DW_AT_use_UTF8 ‡ 0x53 flag 


DW_AT_extension ‡ 0x54 reference 


DW_AT_ranges ‡ 0x55 rangelistptr 


 
 
Page 136  December 20, 2005 







 DATA REPRESENTATION 
 
 


Attribute name Value Classes  


DW_AT_trampoline ‡ 0x56 address, flag, reference, string 


DW_AT_call_column ‡ 0x57 constant 


DW_AT_call_file ‡ 0x58 constant 


DW_AT_call_line ‡ 0x59 constant 


DW_AT_description ‡ 0x5a string 


DW_AT_binary_scale ‡ 0x5b constant 


DW_AT_decimal_scale ‡ 0x5c constant 


DW_AT_small ‡ 0x5d reference 


DW_AT_decimal_sign ‡ 0x5e constant 


DW_AT_digit_count ‡ 0x5f constant 


DW_AT_picture_string ‡ 0x60 string 


DW_AT_mutable ‡ 0x61 flag 


DW_AT_threads_scaled ‡ 0x62 flag 


DW_AT_explicit ‡ 0x63 flag 


DW_AT_object_pointer ‡ 0x64 reference 


DW_AT_endianity ‡ 0x65 constant 


DW_AT_elemental ‡ 0x66 flag 


DW_AT_pure ‡ 0x67 flag 


 
 
December 20, 2005  Page 137 







 DWARF Debugging Information Format, Version 3 
 
 


Attribute name Value Classes  


DW_AT_recursive ‡ 0x68 flag 


DW_AT_lo_user 0x2000 ---  


DW_AT_hi_user 0x3fff ---  


‡ New in DWARF Version 3 


Figure 20. Attribute encodings 


 


 


Form name Value Class  


DW_FORM_addr 0x01 address  


DW_FORM_block2 0x03 block  


DW_FORM_block4 0x04 block  


DW_FORM_data2 0x05 constant  


DW_FORM_data4 0x06 constant, lineptr, loclistptr, macptr, rangelistptr  


DW_FORM_data8 0x07 constant, lineptr, loclistptr, macptr, rangelistptr  


DW_FORM_string 0x08 string  


DW_FORM_block 0x09 block  


DW_FORM_block1 0x0a block  


DW_FORM_data1 0x0b constant  


DW_FORM_flag 0x0c flag  


DW_FORM_sdata 0x0d constant  


 
 
Page 138  December 20, 2005 







 DATA REPRESENTATION 
 
 


Form name Value Class  


DW_FORM_strp 0x0e string  


DW_FORM_udata 0x0f constant  


DW_FORM_ref_addr 0x10 reference  


DW_FORM_ref1 0x11 reference  


DW_FORM_ref2 0x12 reference  


DW_FORM_ref4 0x13 reference  


DW_FORM_ref8 0x14 reference  


DW_FORM_ref_udata 0x15 reference  


DW_FORM_indirect 0x16 (see Section 7.5.3)  


Figure 21. Attribute form encodings 
 
7.6 Variable Length Data 


The special constant data forms DW_FORM_sdata and DW_FORM_udata are encoded using 
“Little Endian Base 128” (LEB128) numbers. LEB128 is a scheme for encoding integers densely 
that exploits the assumption that most integers are small in magnitude. (This encoding is equally 
suitable whether the target machine architecture represents data in big-endian or little-endian 
order. It is “little-endian” only in the sense that it avoids using space to represent the “big” end of 
an unsigned integer, when the big end is all zeroes or sign extension bits).  


DW_FORM_udata (unsigned LEB128) numbers are encoded as follows: start at the low order 
end of an unsigned integer and chop it into 7-bit chunks. Place each chunk into the low order 7 
bits of a byte. Typically, several of the high order bytes will be zero; discard them. Emit the 
remaining bytes in a stream, starting with the low order byte; set the high order bit on each byte 
except the last emitted byte. The high bit of zero on the last byte indicates to the decoder that it 
has encountered the last byte.  


The integer zero is a special case, consisting of a single zero byte.  


 
 
December 20, 2005  Page 139 







 DWARF Debugging Information Format, Version 3 
 
 
Figure 22 gives some examples of DW_FORM_udata numbers. The 0x80 in each case is the 
high order bit of the byte, indicating that an additional byte follows. 


The encoding for DW_FORM_sdata (signed, two’s complement LEB128) numbers is similar, 
except that the criterion for discarding high order bytes is not whether they are zero, but whether 
they consist entirely of sign extension bits. Consider the 32-bit integer -2. The three high level 
bytes of the number are sign extension, thus LEB128 would represent it as a single byte 
containing the low order 7 bits, with the high order bit cleared to indicate the end of the byte 
stream. Note that there is nothing within the LEB128 representation that indicates whether an 
encoded number is signed or unsigned. The decoder must know what type of number to expect.  
 


Number First byte Second byte 


2 2 ---  


127 127 ---  


128 0+0x80 1  


129 1+0x80 1  


130 2+0x80 1  


12857 57+0x80 100  


Figure 22. Examples of unsigned LEB128 encodings 


 


 
 
Page 140  December 20, 2005 







 DATA REPRESENTATION 
 
 


Number First byte Second byte 


2 2 ---  


-2 0x7e ---  


127 127+0x80 0  


-127 1+0x80 0x7f  


128 0+0x80 1  


-128 0+0x80 0x7f  


129 1+0x80 1  


-129 0x7f+0x80 0x7e  


Figure 23. Examples of signed LEB128 encodings 


 


Figure 23 gives some examples of DW_FORM_sdata numbers. 


Appendix C gives algorithms for encoding and decoding these forms.  


7.7 DWARF Expressions and Location Descriptions 


7.7.1 DWARF Expressions 


A DWARF expression is stored in a block of contiguous bytes. The bytes form a set of 
operations. Each location operation has a 1-byte code that identifies that operation. Operations 
can be followed by one or more bytes of additional data. All operations in a DWARF expression 
are concatenated from left to right. The encodings for the operations in a DWARF expression are 
described in Figure 24. 


 
 
December 20, 2005  Page 141 







 DWARF Debugging Information Format, Version 3 
 
 
 


Operation  Code No. of 
Operands Notes  


DW_OP_addr 0x03 1 constant address  
(size target specific)  


DW_OP_deref 0x06 0  


DW_OP_const1u 0x08 1 1-byte constant  


DW_OP_const1s 0x09 1 1-byte constant  


DW_OP_const2u 0x0a 1 2-byte constant  


DW_OP_const2s 0x0b 1 2-byte constant  


DW_OP_const4u 0x0c 1 4-byte constant  


DW_OP_const4s 0x0d 1 4-byte constant  


DW_OP_const8u 0x0e 1 8-byte constant  


DW_OP_const8s 0x0f 1 8-byte constant  


DW_OP_constu 0x10 1 ULEB128 constant  


DW_OP_consts 0x11 1 SLEB128 constant  


DW_OP_dup 0x12 0  


DW_OP_drop 0x13 0  


DW_OP_over 0x14 0  


DW_OP_pick 0x15 1 1-byte stack index  


DW_OP_swap 0x16 0  


DW_OP_rot 0x17 0  


 
 
Page 142  December 20, 2005 







 DATA REPRESENTATION 
 
 


Operation  Code No. of 
Operands Notes  


DW_OP_xderef 0x18 0  


DW_OP_abs 0x19 0  


DW_OP_and 0x1a 0  


DW_OP_div 0x1b 0  


DW_OP_minus 0x1c 0  


DW_OP_mod 0x1d 0  


DW_OP_mul 0x1e 0  


DW_OP_neg 0x1f 0  


DW_OP_not 0x20 0  


DW_OP_or 0x21 0  


DW_OP_plus 0x22 0  


DW_OP_plus_uconst 0x23 1 ULEB128 addend  


DW_OP_shl 0x24 0  


DW_OP_shr 0x25 0  


DW_OP_shra 0x26 0  


DW_OP_xor 0x27 0  


DW_OP_skip 0x2f 1 signed 2-byte constant  


DW_OP_bra 0x28 1 signed 2-byte constant  


DW_OP_eq 0x29 0  


DW_OP_ge 0x2a 0  


 
 
December 20, 2005  Page 143 







 DWARF Debugging Information Format, Version 3 
 
 


Operation  Code No. of 
Operands Notes  


DW_OP_gt 0x2b 0  


DW_OP_le 0x2c 0  


DW_OP_lt 0x2d 0  


DW_OP_ne 0x2e 0  


DW_OP_lit0 0x30 0 


DW_OP_lit1 0x31 0 


...    


DW_OP_lit31 0x4f 0 


literals 0..31 = 
    (DW_OP_lit0 + literal)  


DW_OP_reg0 0x50 0 


DW_OP_reg1 0x51 0 


...    


DW_OP_reg31 0x6f 0 


reg 0..31 = 
    (DW_OP_reg0 + regnum)  


DW_OP_breg0 0x70 1 


DW_OP_breg1 0x71 1 


...    


DW_OP_breg31 0x8f 1 


SLEB128 offset 


base register 0..31 =  
    (DW_OP_breg0 + regnum)  


DW_OP_regx 0x90 1 ULEB128 register  


DW_OP_fbreg 0x91 1 SLEB128 offset  


DW_OP_bregx 0x92 2 ULEB128 register followed by 
SLEB128 offset  


 
 
Page 144  December 20, 2005 







 DATA REPRESENTATION 
 
 


Operation  Code No. of 
Operands Notes  


DW_OP_piece 0x93 1 ULEB128 size of piece addressed  


DW_OP_deref_size 0x94 1 1-byte size of data retrieved  


DW_OP_xderef_size 0x95 1 1-byte size of data retrieved  


DW_OP_nop 0x96 0  


DW_OP_push_object_address ‡ 0x97 0  


DW_OP_call2 ‡ 0x98 1 2-byte offset of DIE 


DW_OP_call4 ‡ 0x99 1 4-byte offset of DIE 


DW_OP_call_ref ‡ 0x9a 1 4- or 8-byte offset of DIE 


DW_OP_form_tls_address ‡ 0x9b 0  


DW_OP_call_frame_cfa ‡ 0x9c 0  


DW_OP_bit_piece ‡ 0x9d 2  


DW_OP_lo_user 0xe0   


DW_OP_hi_user 0xff   


‡ New in DWARF Version 3 


Figure 24. DWARF operation encodings 
 
7.7.2 Location Expressions 


A location expression is a DWARF expression that is used to compute the location (possibly a 
register) of a variable or other entity. 


7.7.3 Location Lists 


Each entry in a location list is either a location list entry, a base address selection entry, or an end 
of list entry.  
 
 
December 20, 2005  Page 145 







 DWARF Debugging Information Format, Version 3 
 
 
A location list entry consists of two relative addresses followed by a 2-byte length, followed by a 
block of contiguous bytes. The length specifies the number of bytes in the block that follows. 
The two addresses are the same size as used by DW_FORM_addr on the target machine. 


A base address selection entry and an end of list entry each consist of two (constant or relocated) 
addresses. The two addresses are the same size as used by DW_FORM_addr on the target 
machine. 


For a location list to be specified, the base address of the corresponding compilation unit must be 
defined (see Section 3.1). 


7.8 Base Type Encodings 


The values of the constants used in the DW_AT_encoding attribute are given in Figure 25. 
 


Base type encoding code name Value


DW_ATE_address 0x01


DW_ATE_boolean 0x02


DW_ATE_complex_float 0x03


DW_ATE_float 0x04


DW_ATE_signed 0x05


DW_ATE_signed_char 0x06


DW_ATE_unsigned 0x07


DW_ATE_unsigned_char 0x08


DW_ATE_imaginary_float ‡ 0x09


DW_ATE_packed_decimal ‡ 0x0a


DW_ATE_numeric_string ‡ 0x0b


DW_ATE_edited ‡ 0x0c


DW_ATE_signed_fixed ‡ 0x0d


 
 
Page 146  December 20, 2005 







 DATA REPRESENTATION 
 
 


Base type encoding code name Value


DW_ATE_unsigned_fixed ‡ 0x0e


DW_ATE_decimal_float ‡ 0x0f 


DW_ATE_lo_user 0x80


DW_ATE_hi_user 0xff 


‡ New in DWARF Version 3 


Figure 25. Base type encoding values 


 


 


Decimal sign code name Value


DW_DS_unsigned ‡ 0x01 


DW_DS_leading_overpunch ‡ 0x02 


DW_DS_trailing_overpunch ‡ 0x03 


DW_DS_leading_separate ‡ 0x04 


DW_DS_trailing_separate ‡ 0x05 


‡ New in DWARF Version 3 


Figure 26. Decimal sign encodings 
 


 
 
December 20, 2005  Page 147 







 DWARF Debugging Information Format, Version 3 
 
 


Endian code name Value


DW_END_default ‡ 0x00 


DW_END_big ‡ 0x01 


DW_END_little ‡ 0x02 


DW_END_lo_user ‡ 0x40 


DW_END_hi_user ‡ 0xff 


‡ New in DWARF Version 3 


Figure 27. Endianity encodings 
 
7.9 Accessibility Codes 


The encodings of the constants used in the DW_AT_accessibility attribute are given in 
Figure 28.  
 


Accessibility code name Value


DW_ACCESS_public 0x01 


DW_ACCESS_protected 0x02 


DW_ACCESS_private 0x03 


Figure 28. Accessibility encodings 


 


 
 
Page 148  December 20, 2005 







 DATA REPRESENTATION 
 
 
7.10 Visibility Codes 


The encodings of the constants used in the DW_AT_visibility attribute are given in Figure 29.  
 


Visibility code name Value


DW_VIS_local 0x01 


DW_VIS_exported 0x02 


DW_VIS_qualified 0x03 


Figure 29. Visibility encodings 


 


7.11 Virtuality Codes 


The encodings of the constants used in the DW_AT_virtuality attribute are given in Figure 30.  
 


Virtuality code name Value


DW_VIRTUALITY_none 0x00 


DW_VIRTUALITY_virtual 0x01 


DW_VIRTUALITY_pure_virtual 0x02 


Figure 30. Virtuality encodings 
 
7.12 Source Languages 


The encodings for source languages are given in Figure 31. Names marked with † and their 
associated values are reserved, but the languages they represent are not well supported in 
DWARF Version 3.  


 
 
December 20, 2005  Page 149 







 DWARF Debugging Information Format, Version 3 
 
 


Language name Value


DW_LANG_C89 0x0001


DW_LANG_C 0x0002


DW_LANG_Ada83† 0x0003


DW_LANG_C_plus_plus 0x0004


DW_LANG_Cobol74 † 0x0005


DW_LANG_Cobol85 † 0x0006


DW_LANG_Fortran77 0x0007


DW_LANG_Fortran90 0x0008


DW_LANG_Pascal83 0x0009


DW_LANG_Modula2 0x000a


DW_LANG_Java ‡ 0x000b


DW_LANG_C99 ‡ 0x000c


DW_LANG_Ada95 †‡ 0x000d


DW_LANG_Fortran95 ‡ 0x000e


DW_LANG_PLI †‡ 0x000f


 
 
Page 150  December 20, 2005 







 DATA REPRESENTATION 
 
 


Language name Value


DW_LANG_ObjC ‡ 0x0010


DW_LANG_ObjC_plus_plus ‡ 0x0011


DW_LANG_UPC ‡ 0x0012


DW_LANG_D ‡ 0x0013


DW_LANG_lo_user 0x8000


DW_LANG_hi_user 0xffff 


† See text  ‡ New in DWARF Version 3 


Figure 31. Language encodings 
 
7.13 Address Class Encodings 


The value of the common address class encoding DW_ADDR_none is 0.  


7.14 Identifier Case 


The encodings of the constants used in the DW_AT_identifier_case attribute are given in 
Figure 32.  
 


Identifier Case Name Value


DW_ID_case_sensitive 0x00 


DW_ID_up_case 0x01 


DW_ID_down_case 0x02 


DW_ID_case_insensitive 0x03 


Figure 32. Identifier case encodings 


 


 
 
December 20, 2005  Page 151 







 DWARF Debugging Information Format, Version 3 
 
 
7.15 Calling Convention Encodings 


The encodings for the values of the DW_AT_calling_convention attribute are given in Figure 33.  
 


Calling Convention Name Value


DW_CC_normal 0x01 


DW_CC_program 0x02 


DW_CC_nocall 0x03 


DW_CC_lo_user 0x40 


DW_CC_hi_user 0xff 


Figure 33. Calling convention encodings 
 
7.16 Inline Codes 


The encodings of the constants used in the DW_AT_inline attribute are given in Figure 34.  
 


Inline Code Name Value


DW_INL_not_inlined 0x00 


DW_INL_inlined 0x01 


DW_INL_declared_not_inlined 0x02 


DW_INL_declared_inlined 0x03 


Figure 34. Inline encodings 


 


 
 
Page 152  December 20, 2005 







 DATA REPRESENTATION 
 
 
7.17 Array Ordering 


The encodings for the values of the ordering attribute of arrays used in the DW_AT_ordering 
attribute are given in Figure 35.  
 


Ordering name Value


DW_ORD_row_major 0x00 


DW_ORD_col_major 0x01 


Figure 35. Ordering encodings 


 


7.18 Discriminant Lists 


The descriptors used in the DW_AT_discr_list attribute are encoded as 1-byte constants. The 
defined values are given in Figure 36.  
 


Descriptor Name Value


DW_DSC_label 0x00 


DW_DSC_range 0x01 


Figure 36. Discriminant descriptor encodings 


 


7.19 Name Lookup Tables 


Each set of entries in the table of global names contained in the .debug_pubnames and 
.debug_pubtypes sections begins with a header consisting of: 


1. unit_length (initial length) 


A 4-byte or 12-byte length of the set of entries for this compilation unit, not including the 
length field itself. In the 32-bit DWARF format, this is a 4-byte unsigned integer (which 
must be less than 0xffffff00); in the 64-bit DWARF format, this consists of the 4-byte 
value 0xffffffff followed by an 8-byte unsigned integer that gives the actual length (see 
Section 7.4). 


 
 
December 20, 2005  Page 153 







 DWARF Debugging Information Format, Version 3 
 
 
2. version (uhalf) 


A 2-byte version identifier containing the value 2 for DWARF Version 3 (see Appendix F). 


3. debug_info_offset (section offset) 


A 4-byte or 8-byte offset into the .debug_info section of the compilation unit header. In the 
32-bit DWARF format, this is a 4-byte unsigned offset; in the 64-bit DWARF format, this 
field is an 8-byte unsigned offset (see Section 7.4). 


4. debug_info_length (section length) 


A 4-byte or 8-byte length containing the size in bytes of the contents of the .debug_info 
section generated to represent this compilation unit. In the 32-bit DWARF format, this is a 4-
byte unsigned length; in the 64-bit DWARF format, this is an 8-byte unsigned length (see 
Section 7.4). 


This header is followed by a series of tuples. Each tuple consists of a 4-byte or 8-byte offset 
followed by a string of non-null bytes terminated by one null byte. In the 32-bit DWARF format, 
this is a 4-byte offset; in the 64-bit DWARF format, it is an 8-byte offset. Each set is terminated 
by an offset containing the value 0.  


7.20 Address Range Table 


Each set of entries in the table of address ranges contained in the .debug_aranges section 
begins with a header containing: 


1. unit_length (initial length) 


A 4-byte or 12-byte length containing the length of the set of entries for this compilation unit, 
not including the length field itself. In the 32-bit DWARF format, this is a 4-byte unsigned 
integer (which must be less than 0xffffff00); in the 64-bit DWARF format, this consists of 
the 4-byte value 0xffffffff followed by an 8-byte unsigned integer that gives the actual 
length (see Section 7.4). 


2. version (uhalf) 


A 2-byte version identifier containing the value 2 for DWARF Version 3 (see Appendix F). 


3. debug_info_offset (section offset) 


A 4-byte or 8-byte offset into the .debug_info section of the compilation unit header. In the 
32-bit DWARF format, this is a 4-byte unsigned offset; in the 64-bit DWARF format, this is 
an 8-byte unsigned offset (see Section 7.4). 


 
 
Page 154  December 20, 2005 







 DATA REPRESENTATION 
 
 
4. address_size (ubyte) 


A 1-byte unsigned integer containing the size in bytes of an address (or the offset portion of 
an address for segmented addressing) on the target system. 


5. segment_size (ubyte) 


A 1-byte unsigned integer containing the size in bytes of a segment descriptor on the target 
system. 


This header is followed by a series of tuples. Each tuple consists of an address and a length, each 
in the size appropriate for an address on the target architecture. The first tuple following the 
header in each set begins at an offset that is a multiple of the size of a single tuple (that is, twice 
the size of an address). The header is padded, if necessary, to the appropriate boundary. Each set 
of tuples is terminated by a 0 for the address and 0 for the length.  


7.21 Line Number Information 


The version number in the line number program header is 3 for DWARF Version 3. 


The boolean values “true” and “false” used by the line number information program are encoded 
as a single byte containing the value 0 for “false,” and a non-zero value for “true.” 


The encodings for the pre-defined standard opcodes are given in Figure 37. 
 


Opcode Name Value


DW_LNS_copy 0x01 


DW_LNS_advance_pc 0x02 


DW_LNS_advance_line 0x03 


DW_LNS_set_file 0x04 


DW_LNS_set_column 0x05 


DW_LNS_negate_stmt 0x06 


DW_LNS_set_basic_block 0x07 


DW_LNS_const_add_pc 0x08 


 
 
December 20, 2005  Page 155 







 DWARF Debugging Information Format, Version 3 
 
 


Opcode Name Value


DW_LNS_fixed_advance_pc 0x09 


DW_LNS_set_prologue_end ‡ 0x0a 


DW_LNS_set_epilogue_begin ‡ 0x0b 


DW_LNS_set_isa ‡ 0x0c 


‡ New in DWARF Version 3 


Figure 37. Line Number Standard Opcode Encodings 


The encodings for the predefined extended opcodes are given in Figure 38.  


 


 


Opcode Name Value


DW_LNE_end_sequence 0x01 


DW_LNE_set_address 0x02 


DW_LNE_define_file 0x03 


DW_LNE_lo_user ‡ 0x80 


DW_LNE_hi_user ‡ 0xff 


‡ New in DWARF Version 3 


Figure 38. Line Number Extended Opcode Encodings 


 
 
Page 156  December 20, 2005 







 DATA REPRESENTATION 
 
 
7.22 Macro Information 


The source line numbers and source file indices encoded in the macro information section are 
represented as unsigned LEB128 numbers as are the constants in an 
DW_MACINFO_vendor_ext entry. 


The macinfo type is encoded as a single byte. The encodings are given in Figure 39.  
 


Macinfo Type Name Value


DW_MACINFO_define 0x01 


DW_MACINFO_undef 0x02 


DW_MACINFO_start_file 0x03 


DW_MACINFO_end_file 0x04 


DW_MACINFO_vendor_ext 0xff 


Figure 39. Macinfo Type Encodings 
 
7.23 Call Frame Information 


In the 32-bit DWARF format, the value of the CIE id in the CIE header is 0xffffffff; in the 
64-bit DWARF format, the value is 0xffffffffffffffff. 


The value of the CIE version number is 3 (see Appendix F). 


Call frame instructions are encoded in one or more bytes. The primary opcode is encoded in the 
high order two bits of the first byte (that is, opcode = byte >> 6). An operand or extended opcode 
may be encoded in the low order 6 bits. Additional operands are encoded in subsequent bytes. 
The instructions and their encodings are presented in Figure 40. 
 


 
 
December 20, 2005  Page 157 







 DWARF Debugging Information Format, Version 3 
 
 


Instruction High 2
Bits 


Low 6 
Bits Operand 1 Operand 2  


DW_CFA_advance_loc 0x1 delta   


DW_CFA_offset 0x2 register ULEB128 offset   


DW_CFA_restore 0x3 register   


DW_CFA_nop 0 0   


DW_CFA_set_loc 0 0x01 address   


DW_CFA_advance_loc1 0 0x02 1-byte delta   


DW_CFA_advance_loc2 0 0x03 2-byte delta   


DW_CFA_advance_loc4 0 0x04 4-byte delta   


DW_CFA_offset_extended 0 0x05 ULEB128 register ULEB128 offset  


DW_CFA_restore_extended 0 0x06 ULEB128 register   


DW_CFA_undefined 0 0x07 ULEB128 register   


DW_CFA_same_value 0 0x08 ULEB128 register   


DW_CFA_register 0 0x09 ULEB128 register ULEB128 register 


DW_CFA_remember_state 0 0x0a   


DW_CFA_restore_state 0 0x0b   


DW_CFA_def_cfa 0 0x0c ULEB128 register ULEB128 offset  


DW_CFA_def_cfa_register 0 0x0d ULEB128 register   


DW_CFA_def_cfa_offset 0 0x0e ULEB128 offset   


DW_CFA_def_cfa_expression ‡ 0 0x0f BLOCK  


DW_CFA_expression ‡ 0 0x10 ULEB128 register BLOCK 


 
 
Page 158  December 20, 2005 







 DATA REPRESENTATION 
 
 


Instruction High 2
Bits 


Low 6 
Bits Operand 1 Operand 2  


DW_CFA_offset_extended_sf ‡ 0 0x11 ULEB128 register SLEB128 offset 


DW_CFA_def_cfa_sf ‡ 0 0x12 ULEB128 register SLEB128 offset 


DW_CFA_def_cfa_offset_sf ‡ 0 0x13 SLEB128 offset  


DW_CFA_val_offset ‡ 0 0x14 ULEB128 ULEB128 


DW_CFA_val_offset_sf ‡ 0 0x15 ULEB128 SLEB128 


DW_CFA_val_expression ‡ 0 0x16 ULEB128 BLOCK 


DW_CFA_lo_user 0 0x1c   


DW_CFA_hi_user 0 0x3f   


‡ New in DWARF Version 3 


Figure 40. Call frame instruction encodings 
 
7.24 Non-contiguous Address Ranges 


Each entry in a range list (see Section 2.17.3) is either a range list entry, a base address selection 
entry, or an end of list entry. 


A range list entry consists of two relative addresses. The addresses are the same size as used by 
 on the target machine. DW_FORM_addr


A base address selection entry and an end of list entry each consist of two (constant or relocated) 
addresses. The two addresses are the same size as used by DW_FORM_addr on the target 
machine. 


For a range list to be specified, the base address of the corresponding compilation unit must be 
defined (see Section 3.1). 


 
 
December 20, 2005  Page 159 







 DWARF Debugging Information Format, Version 3 
 
 
7.25 Dependencies and Constraints 


The debugging information in this format is intended to exist in the .debug_abbrev, 
.debug_aranges, .debug_frame, .debug_info, .debug_line, .debug_loc, .debug_macinfo, 
.debug_pubnames, .debug_pubtypes, .debug_ranges and .debug_str sections of an object 
file, or equivalent separate file or database. The information is not word-aligned. Consequently: 


• For the 32-bit DWARF format and a target architecture with 32-bit addresses, an assembler 
or compiler must provide a way to produce 2-byte and 4-byte quantities without alignment 
restrictions, and the linker must be able to relocate a 4-byte address or section offset that 
occurs at an arbitrary alignment. 


• For the 32-bit DWARF format and a target architecture with 64-bit addresses, an assembler 
or compiler must provide a way to produce 2-byte, 4-byte and 8-byte quantities without 
alignment restrictions, and the linker must be able to relocate an 8-byte address or section 
offset that occurs at an arbitrary alignment. 


• For the 64-bit DWARF format and a target architecture with 32-bit addresses, an assembler 
or compiler must provide a way to produce 2-byte, 4-byte and 8-byte quantities without 
alignment restrictions, and the linker must be able to relocate an 8-byte address or section 
offset that occurs at an arbitrary alignment. 


It is expected that this will be required only for very large 32-bit programs or by those 
architectures which support a mix of 32-bit and 64-bit code and data within the same 
executable object. 


• For the 64-bit DWARF format and a target architecture with 64-bit addresses, an assembler 
or compiler must provide a way to produce 2-byte, 4-byte and 8-byte quantities without 
alignment restrictions, and the linker must be able to relocate an 8-byte address or section 
offset that occurs at an arbitrary alignment. 


 
 
Page 160  December 20, 2005 







 DATA REPRESENTATION 
 
 
7.26 Integer Representation Names 


The sizes of the integers used in the lookup by name, lookup by address, line number and call 
frame information sections are given in Figure 41.  
 


Representation
name Representation 


sbyte signed, 1-byte integer 


ubyte unsigned, 1-byte integer 


uhalf unsigned, 2-byte integer 


uword unsigned, 4-byte integer 


Figure 41. Integer Representation Names 


 


 


 


 


 


 


 


 


 


 


 


 


 


 
 
December 20, 2005  Page 161 







 DWARF Debugging Information Format, Version 3 
 
 
 


 
 
Page 162  December 20, 2005 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 163  December 20, 2005 


Appendix A -- Attributes by Tag Value (informative) 
The list below enumerates the attributes that are most applicable to each type of debugging 
information entry. DWARF does not in general require that a given debugging information entry 
contain a particular attribute or set of attributes. Instead, a DWARF producer is free to generate 
any, all, or none of the attributes described in the text as being applicable to a given entry. Other 
attributes (both those defined within this document but not explicitly associated with the entry in 
question, and new, vendor-defined ones) may also appear in a given debugging entry. Therefore, 
the list may be taken as instructive, but cannot be considered definitive.  


In the following table, DECL means DW_AT_decl_column, DW_AT_decl_file, and 
DW_AT_decl_line.  


 


TAG Name Applicable Attributes 


DW_TAG_access_declaration 
 
 
 
 


DECL 
DW_AT_accessibility 
DW_AT_description 
DW_AT_name 
DW_AT_sibling  


DW_TAG_array_type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_allocated 
DW_AT_associated 
DW_AT_bit_stride 
DW_AT_byte_size 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_name 
DW_AT_ordering 
DW_AT_sibling 
DW_AT_specification  
DW_AT_start_scope 
DW_AT_type 
DW_AT_visibility  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 164  December 20, 2005 


DW_TAG_base_type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


DW_AT_allocated 
DW_AT_associated 
DW_AT_binary_scale 
DW_AT_bit_offset 
DW_AT_bit_size 
DW_AT_byte_size 
DW_AT_data_location 
DW_AT_decimal_scale 
DW_AT_decimal_sign 
DW_AT_description 
DW_AT_digit_count 
DW_AT_encoding 
DW_AT_endianity 
DW_AT_name 
DW_AT_picture_string 
DW_AT_sibling 
DW_AT_small  


DW_TAG_catch_block 
 
 
 
 
 


DW_AT_abstract_origin 
DW_AT_high_pc 
DW_AT_low_pc 
DW_AT_ranges 
DW_AT_segment 
DW_AT_sibling  


DW_TAG_class_type 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_allocated 
DW_AT_associated 
DW_AT_byte_size 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_name 
DW_AT_sibling 
DW_AT_specification 
DW_AT_start_scope 
DW_AT_visibility  







 Appendix -- Attributes by Tag Value (informative) 
 
 


 
 
December 20, 2005  Page 165 


DW_TAG_common_block 
 
 
 
 
 
 
 


DECL 
DW_AT_declaration 
DW_AT_description 
DW_AT_location 
DW_AT_name 
DW_AT_segment 
DW_AT_sibling 
DW_AT_visibility  


DW_TAG_common_inclusion 
 
 
 
 


DECL 
DW_AT_common_reference 
DW_AT_declaration 
DW_AT_sibling 
DW_AT_visibility  


DW_TAG_compile_unit 
 
 
 
 
 
 
 
 
 
 
 
 


DW_AT_base_types 
DW_AT_comp_dir 
DW_AT_identifier_case 
DW_AT_high_pc 
DW_AT_language 
DW_AT_low_pc 
DW_AT_macro_info 
DW_AT_name 
DW_AT_producer 
DW_AT_ranges 
DW_AT_segment  
DW_AT_stmt_list 
DW_AT_use_UTF8  


DW_TAG_condition 
 
 


DECL 
DW_AT_name 
DW_AT_sibling 


DW_TAG_const_type 
 
 
 
 
 


DW_AT_allocated 
DW_AT_associated 
DW_AT_data_location 
DW_AT_name 
DW_AT_sibling 
DW_AT_type  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 166  December 20, 2005 


DW_TAG_constant 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_accessibility 
DW_AT_const_value 
DW_AT_declaration 
DW_AT_description 
DW_AT_endianity 
DW_AT_external 
DW_AT_name 
DW_AT_sibling 
DW_AT_start_scope 
DW_AT_type 
DW_AT_visibility  


DW_TAG_dwarf_procedure DW_AT_location 


DW_TAG_entry_point 
 
 
 
 
 
 
 
 
 


DW_AT_address_class 
DW_AT_description 
DW_AT_frame_base 
DW_AT_low_pc 
DW_AT_name 
DW_AT_return_addr 
DW_AT_segment 
DW_AT_sibling 
DW_AT_static_link 
DW_AT_type  







 Appendix -- Attributes by Tag Value (informative) 
 
 


 
 
December 20, 2005  Page 167 


DW_TAG_enumeration_type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_allocated 
DW_AT_associated 
DW_AT_bit_stride 
DW_AT_byte_size 
DW_AT_byte_stride 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_name 
DW_AT_sibling 
DW_AT_specification  
DW_AT_start_scope 
DW_AT_type 
DW_AT_visibility  


DW_TAG_enumerator 
 
 
 
 


DECL 
DW_AT_const_value 
DW_AT_description 
DW_AT_name 
DW_AT_sibling  


DW_TAG_file_type 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_allocated 
DW_AT_associated 
DW_AT_byte_size 
DW_AT_data_location 
DW_AT_description 
DW_AT_name 
DW_AT_sibling 
DW_AT_start_scope 
DW_AT_type 
DW_AT_visibility  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 168  December 20, 2005 


DW_TAG_formal_parameter 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_artificial 
DW_AT_const_value  
DW_AT_default_value 
DW_AT_description 
DW_AT_endianity 
DW_AT_is_optional 
DW_AT_location 
DW_AT_name 
DW_AT_segment 
DW_AT_sibling 
DW_AT_type 
DW_AT_variable_parameter  


DW_TAG_friend 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_friend 
DW_AT_sibling  


DW_TAG_imported_declaration 
 
 
 
 
 
 


DECL 
DW_AT_accessibility 
DW_AT_description 
DW_AT_import 
DW_AT_name 
DW_AT_sibling 
DW_AT_start_scope  


DW_TAG_imported_module 
 
 
 


DECL 
DW_AT_import 
DW_AT_sibling 
DW_AT_start_scope 


DW_TAG_imported_unit DW_AT_import 







 Appendix -- Attributes by Tag Value (informative) 
 
 


 
 
December 20, 2005  Page 169 


DW_TAG_inheritance 
 
 
 
 
 


DECL 
DW_AT_accessibility 
DW_AT_data_member_location 
DW_AT_sibling 
DW_AT_type 
DW_AT_virtuality  


DW_TAG_inlined_subroutine 
 
 
 
 
 
 
 
 
 
 
 
 


DW_AT_abstract_origin 
DW_AT_call_column 
DW_AT_call_file 
DW_AT_call_line 
DW_AT_entry_pc 
DW_AT_high_pc 
DW_AT_low_pc 
DW_AT_ranges 
DW_AT_return_addr 
DW_AT_segment 
DW_AT_sibling 
DW_AT_start_scope 
DW_AT_trampoline  


DW_TAG_interface_type 
 
 
 
 
 


DECL 
DW_AT_accessibility 
DW_AT_description 
DW_AT_name 
DW_AT_sibling 
DW_AT_start_scope  


DW_TAG_label 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_description 
DW_AT_low_pc 
DW_AT_name 
DW_AT_segment 
DW_AT_start_scope 
DW_AT_sibling  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 170  December 20, 2005 


DW_TAG_lexical_block 
 
 
 
 
 
 
 


DW_AT_abstract_origin 
DW_AT_description 
DW_AT_high_pc 
DW_AT_low_pc 
DW_AT_name 
DW_AT_ranges 
DW_AT_segment 
DW_AT_sibling  


DW_TAG_member 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_accessibility 
DW_AT_bit_offset 
DW_AT_bit_size 
DW_AT_byte_size 
DW_AT_data_member_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_mutable 
DW_AT_name 
DW_AT_sibling 
DW_AT_type 
DW_AT_visibility  







 Appendix -- Attributes by Tag Value (informative) 
 
 


 
 
December 20, 2005  Page 171 


DW_TAG_module 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_accessibility 
DW_AT_declaration 
DW_AT_description 
DW_AT_entry_pc 
DW_AT_high_pc 
DW_AT_low_pc 
DW_AT_name 
DW_AT_priority 
DW_AT_ranges 
DW_AT_segment 
DW_AT_sibling 
DW_AT_specification  
DW_AT_visibility  


DW_TAG_namelist 
 
 
 
 
 
 


DECL  
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_declaration 
DW_AT_name 
DW_AT_sibling 
DW_AT_visibility  


DW_TAG_namelist_item 
 
 


DECL 
DW_AT_namelist_item 
DW_AT_sibling  


DW_TAG_namespace 
 
 
 
 
 


DECL 
DW_AT_description 
DW_AT_extension 
DW_AT_name 
DW_AT_sibling 
DW_AT_start_scope 


DW_TAG_packed_type 
 
 
 
 
 


DW_AT_allocated 
DW_AT_associated 
DW_AT_data_location 
DW_AT_name 
DW_AT_sibling 
DW_AT_type  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 172  December 20, 2005 


DW_TAG_partial_unit 
 
 
 
 
 
 
 
 
 
 
 
 
 


DW_AT_base_types 
DW_AT_comp_dir 
DW_AT_description 
DW_AT_identifier_case 
DW_AT_high_pc 
DW_AT_language 
DW_AT_low_pc 
DW_AT_macro_info 
DW_AT_name 
DW_AT_producer 
DW_AT_ranges 
DW_AT_segment  
DW_AT_stmt_list 
DW_AT_use_UTF8 


DW_TAG_pointer_type 
 
 
 
 
 
 
 


DW_AT_address_class 
DW_AT_allocated 
DW_AT_associated 
DW_AT_data_location 
DW_AT_name 
DW_AT_sibling 
DW_AT_specification  
DW_AT_type  


DW_TAG_ptr_to_member_type 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_address_class 
DW_AT_allocated 
DW_AT_associated 
DW_AT_containing_type 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_name 
DW_AT_sibling 
DW_AT_type 
DW_AT_use_location 
DW_AT_visibility  







 Appendix -- Attributes by Tag Value (informative) 
 
 


 
 
December 20, 2005  Page 173 


DW_TAG_reference_type 
 
 
 
 
 
 


DW_AT_address_class 
DW_AT_allocated 
DW_AT_associated 
DW_AT_data_location 
DW_AT_name 
DW_AT_sibling 
DW_AT_type  


DW_TAG_restrict_type 
 
 
 
 
 


DW_AT_allocated 
DW_AT_associated 
DW_AT_data_location 
DW_AT_name 
DW_AT_sibling 
DW_AT_type  


DW_TAG_set_type 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_allocated 
DW_AT_associated 
DW_AT_byte_size 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_name 
DW_AT_start_scope 
DW_AT_sibling 
DW_AT_type 
DW_AT_visibility  


DW_TAG_shared_type 
 
 
 
 


DECL 
DW_AT_count 
DW_AT_name 
DW_AT_sibling 
DW_AT_type 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 174  December 20, 2005 


DW_TAG_string_type 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility  
DW_AT_allocated 
DW_AT_associated 
DW_AT_byte_size 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_name 
DW_AT_sibling 
DW_AT_start_scope 
DW_AT_string_length 
DW_AT_visibility  


DW_TAG_structure_type 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_allocated 
DW_AT_associated 
DW_AT_byte_size 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_name 
DW_AT_sibling 
DW_AT_specification 
DW_AT_start_scope 
DW_AT_visibility  







 Appendix -- Attributes by Tag Value (informative) 
 
 


 
 
December 20, 2005  Page 175 


DW_TAG_subprogram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_address_class 
DW_AT_artificial 
DW_AT_calling_convention 
DW_AT_declaration 
DW_AT_description 
DW_AT_elemental 
DW_AT_entry_pc 
DW_AT_explicit 
DW_AT_external 
DW_AT_frame_base 
DW_AT_high_pc 
DW_AT_inline 
DW_AT_low_pc 
DW_AT_name 
DW_AT_object_pointer 
DW_AT_prototyped 
DW_AT_pure 
DW_AT_ranges 
DW_AT_recursive 
DW_AT_return_addr 
DW_AT_segment 
DW_AT_sibling 
DW_AT_specification 
DW_AT_start_scope 
DW_AT_static_link 
DW_AT_trampoline 
DW_AT_type 
DW_AT_visibility 
DW_AT_virtuality 
DW_AT_vtable_elem_location  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 176  December 20, 2005 


DW_TAG_subrange_type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_allocated 
DW_AT_associated 
DW_AT_bit_stride 
DW_AT_byte_size 
DW_AT_byte_stride 
DW_AT_count 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_lower_bound 
DW_AT_name 
DW_AT_sibling 
DW_AT_threads_scaled 
DW_AT_type 
DW_AT_upper_bound 
DW_AT_visibility  


DW_TAG_subroutine_type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_address_class 
DW_AT_allocated 
DW_AT_associated 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_name 
DW_AT_prototyped 
DW_AT_sibling 
DW_AT_start_scope 
DW_AT_type 
DW_AT_visibility  







 Appendix -- Attributes by Tag Value (informative) 
 
 


 
 
December 20, 2005  Page 177 


DW_TAG_template_type_parameter 
 
 
 
 


DECL 
DW_AT_description 
DW_AT_name 
DW_AT_sibling 
DW_AT_type  


DW_TAG_template_value_parameter
 
 
 
 
 


DECL 
DW_AT_const_value 
DW_AT_description 
DW_AT_name 
DW_AT_sibling 
DW_AT_type  


DW_TAG_thrown_type 
 
 
 
 
 


DECL 
DW_AT_allocated 
DW_AT_associated 
DW_AT_data_location 
DW_AT_sibling 
DW_AT_type  


DW_TAG_try_block 
 
 
 
 
 


DW_AT_abstract_origin 
DW_AT_high_pc 
DW_AT_low_pc 
DW_AT_ranges 
DW_AT_segment 
DW_AT_sibling  


DW_TAG_typedef 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_allocated 
DW_AT_associated 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description 
DW_AT_name 
DW_AT_sibling 
DW_AT_start_scope 
DW_AT_type 
DW_AT_visibility  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 178  December 20, 2005 


DW_TAG_union_type 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_allocated 
DW_AT_associated 
DW_AT_byte_size 
DW_AT_data_location 
DW_AT_declaration 
DW_AT_description  
DW_AT_name 
DW_AT_sibling 
DW_AT_specification 
DW_AT_start_scope 
DW_AT_visibility  


DW_TAG_unspecified_parameters 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_artificial 
DW_AT_sibling  


DW_TAG_unspecified_type 
 
 


DECL 
DW_AT_description 
DW_AT_name 


DW_TAG_variable 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility 
DW_AT_const_value 
DW_AT_declaration 
DW_AT_description 
DW_AT_endianity 
DW_AT_external 
DW_AT_location 
DW_AT_name 
DW_AT_segment 
DW_AT_sibling 
DW_AT_specification 
DW_AT_start_scope 
DW_AT_type 
DW_AT_visibility  







 Appendix -- Attributes by Tag Value (informative) 
 
 


 
 
December 20, 2005  Page 179 


DW_TAG_variant 
 
 
 
 
 
 


DECL 
DW_AT_accessibility 
DW_AT_abstract_origin 
DW_AT_declaration 
DW_AT_discr_list 
DW_AT_discr_value 
DW_AT_sibling  


DW_TAG_variant_part 
 
 
 
 
 
 


DECL 
DW_AT_abstract_origin 
DW_AT_accessibility  
DW_AT_declaration 
DW_AT_discr 
DW_AT_sibling 
DW_AT_type  


DW_TAG_volatile_type 
 
 
 
 
 
 


DECL 
DW_AT_allocated 
DW_AT_associated 
DW_AT_data_location 
DW_AT_name 
DW_AT_sibling 
DW_AT_type  


DW_TAG_with_stmt 
 
 
 
 
 
 
 
 
 
 


DW_AT_accessibility 
DW_AT_address_class 
DW_AT_declaration 
DW_AT_high_pc 
DW_AT_location 
DW_AT_low_pc 
DW_AT_ranges 
DW_AT_segment 
DW_AT_sibling 
DW_AT_type 
DW_AT_visibility  


Figure 42. Attributes by TAG value 


 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 180  December 20, 2005 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 181  December 20, 2005 


Appendix B -- Debug Section Relationships (informative) 
DWARF information is organized into multiple program sections, each of which holds a 
particular kind of information. In some cases, information in one section refers to information in 
one or more of the others. These relationships are illustrated by the diagram and associated notes 
on the following pages. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 182 


 


 


 


 


 


Figu


 
.debug_frame 


 
.debug_abbrev 


To compilation unit (a)


 
.debug_aranges 


 
 
.debug_str 


 
.debug_pubnames 


.debug_pubtypes 


DW_AT_stmt_


To compilation unit (b) 


 
.debug_info 

 To abbreviations (c)

 


 


 


 
 
.debug_loc 


DW_FORM_strp (d) 

 DW_OP_call_ref (e)

 December 20, 2005 


 


 


 


 


 


 


 


 


 


 


 
re 43. Debug section relationships 


DW_AT_location (f) 


 
.debug_macinfo 


DW_AT_macinfo (h)


list (i)


 
.debug_line 


 
.debug_ranges 


DW_AT_ranges (g) 







 Appendix -- Debug Section Relationships (informative) 
 
 


 
 
December 20, 2005  Page 183 


 


 


Notes 


 


(a) .debug_aranges The debug_info_offset value in the header is the offset in the 
.debug_info section of the corresponding compilation unit header (not 
the compilation unit entry). 


(b) .debug_pubnames and .debug_pubtypes 
The debug_info_offset value in the header is the offset in the 
.debug_info section of the corresponding compilation unit header (not 
the compilation unit entry). Each pubname/pubtype has the offset (within 
the corresponding compilation unit) of the applicable debugging 
information entry. 


(c) .debug_info The debug_abbrev_offset value in the header is the offset in the 
.debug_abbrev section of the abbreviations for that compilation unit. 


(d) .debug_info Attribute values of class string may have form DW_FORM_strp, whose 
value is the offset in the .debug_str section of the corresponding string. 


(e) .debug_loc The operand of the DW_OP_call_ref DWARF expression operator is the 
offset of a debugging information entry in the .debug_info section.  


(f) .debug_info An attribute value of class loclistptr (specifically form 
DW_FORM_data4/8) is an offset within the .debug_loc section of a 
location list. 


(g) .debug_info An attribute value of class rangelistptr (specifically form 
DW_FORM_data4/8) is an offset within the .debug_ranges section of a 
range list. 


(h) .debug_info An attribute value of class macptr (specifically form DW_FORM_data4/8) 
is an offset within the .debug_macinfo section of the beginning of the 
macro information for the referencing unit.  


(i) .debug_info An attribute value of class lineptr (specifically form DW_FORM_data4/8) 
is an offset in the .debug_line section of the beginning of the line 
number information for the referencing unit.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 184  December 20, 2005 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 185  December 20, 2005 


Appendix C -- Variable Length Data: Encoding/Decoding (informative) 
Here are algorithms expressed in a C-like pseudo-code to encode and decode signed and 
unsigned numbers in LEB128 representation. 
 
 


do 
{ 
    byte = low order 7 bits of value; 
    value >>= 7; 
    if (value != 0) /* more bytes to come */ 
        set high order bit of byte; 
    emit byte; 
} while (value != 0); 
 


Figure 44. Algorithm to encode an unsigned integer 
 


more = 1; 
negative = (value < 0); 
size = no. of bits in signed integer; 
while(more) 
{ 
     byte = low order 7 bits of value; 
     value >>= 7; 
     /* the following is unnecessary if the 
      * implementation of >>= uses an arithmetic rather 
      * than logical shift for a signed left operand 
      */ 
     if (negative) 
         /* sign extend */ 
         value |= - (1 <<(size - 7)); 
     /* sign bit of byte is second high order bit (0x40) */ 
     if ((value ==  0 && sign bit of byte is clear) || 
         (value == -1 && sign bit of byte is set)) 
         more = 0; 
     else 
         set high order bit of byte; 
     emit byte; 
} 


Figure 45. Algorithm to encode a signed integer 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 186  December 20, 2005 


 
 


result = 0; 
shift = 0; 
while(true) 
{ 
     byte = next byte in input; 
     result |= (low order 7 bits of byte << shift); 
     if (high order bit of byte == 0) 
          break; 
     shift += 7; 
} 


 


Figure 46. Algorithm to decode an unsigned LEB128 number 


 
 


result = 0; 
shift = 0; 
size = number of bits in signed integer; 
while(true) 
{ 
     byte = next byte in input; 
     result |= (low order 7 bits of byte << shift); 
     shift += 7; 
     /* sign bit of byte is second high order bit (0x40) */ 
     if (high order bit of byte == 0) 
          break; 
} 
if ((shift <size) && (sign bit of byte is set)) 
    /* sign extend */ 
    result |= - (1 << shift); 


 


Figure 47. Algorithm to decode a signed LEB128 number 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 187  December 20, 2005 


48


     ---- File myfile.c 


Appendix D -- Examples (informative) 
The following sections provide examples that illustrate various aspects of the DWARF 
debugging information format. 


D.1 Compilation Units and Abbreviations Table Example 


Figure  depicts the relationship of the abbreviations tables contained in the .debug_abbrev 
section to the information contained in the .debug_info section. Values are given in symbolic 
form, where possible. 


The figure corresponds to the following two trivial source files: 


 


 
     typedef char* POINTER; 
 
     ----- File myfile2.c 
 
     typedef char* strp; 
 
     ----- 


 


 







 DWARF Debugging Information Format, Version 3 
 
 


Compilation Unit 1: .debug_info 


 


length 
3 
a1 (abbreviations table offset) 
4 


1 
“myfile.c” 
“Best Compiler Corp: Version 1.3” 
“mymachine:/home/mydir/src” 
DW_LANG_C89 
0x0 
0x55 
DW_FORM_data4 
0x0 


e1: 
 
 
 


2  
“char” 
DW_ATE_unsigned_char 
1 


e2: 
 


3 
e1 


4 
“POINTER” 
e2   


0  


 


          Compilation Unit 2: .debug_info 


length 
3 
a1 (abbreviations table offset) 
4  


...  


4 
“strp” 
e2 


 


...  


                      Abbreviation Table - .debug_abbrev 


a1: 
 
 
 
 
 
 
 
 
 
 


1 
DW_TAG_compile_unit 
DW_CHILDREN_yes 
DW_AT_name 
DW_AT_producer 
DW_AT_comp_dir 
DW_AT_language 
DW_AT_low_pc 
DW_AT_high_pc 
DW_AT_stmt_list 
0 


 
 
 
DW_FORM_string 
DW_FORM_string 
DW_FORM_string 
DW_FORM_data1 
DW_FORM_addr 
DW_FORM_addr 
DW_FORM_indirect 
0  


2 
DW_TAG_base_type 
DW_CHILDREN_no 
DW_AT_name 
DW_AT_encoding 
DW_AT_byte_size 
0 


 
 
 
DW_FORM_string 
DW_FORM_data1 
DW_FORM_data1 
0  


3 
DW_TAG_pointer_type 
DW_CHILDREN_no 
DW_AT_type 
0 


 
 
 
DW_FORM_ref4 
0 


 
 
 
DW_FORM_string 
DW_FORM_ref_addr 
0  


 0   


 


 


 


4 


0 


DW_TAG_typedef 
DW_CHILDREN_no 
DW_AT_name 
DW_AT_type 


 


Figure 48. Compilation units and abbreviations table 


 
 
Page 188  December 20, 2005 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 189  December 20, 2005 


D.2 Aggregate Examples 


The following examples illustrate how to represent some of the more complicated forms of array 
and record aggregates using DWARF. 


D.2.1 Fortran 90 Example 


Consider the Fortran 90 source fragment in Figure . 49


allocate(arrays(20)) 


50


 


type array_ptr 
real :: myvar 
real, dimension (:), pointer :: ap 
end type array_ptr 
 
type(array_ptr), allocatable, dimension(:) :: arrays 
 


 
do i = 1, 20 
allocate(arrays(i)%ap(i+10)) 
end do 


Figure 49. Fortran 90 example: source fragment 


For allocatable and pointer arrays, it is essentially required by the Fortran 90 semantics that each 
array consist of two parts, which we here call 1) the descriptor and 2) the raw data. (A descriptor 
has often been called a dope vector in other contexts, although it is often a structure of some kind 
rather than a simple vector.) Because there are two parts, and because the lifetime of the 
descriptor is necessarily longer than and includes that of the raw data, there must be an address 
somewhere in the descriptor that points to the raw data when, in fact, there is some, that is, when 
the "variable" is allocated or associated. 


For concreteness, suppose that a descriptor looks something like the C structure in Figure . 
Note, however, that it is a property of the design that 1) a debugger needs no builtin knowledge 
of this structure and 2) there does not need to be an explicit representation of this structure in the 
DWARF input to the debugger. 
 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 190  December 20, 2005 


struct desc { 
 long    el_len;  // Element length 
 void *  base;           // Address of raw data 
    int ptr_assoc : 1; // Pointer is associated flag 
 int     ptr_alloc : 1; // Pointer is allocated flag 
 int     num_dims  : 6; // Number of dimensions 
 struct  dims_str {      // For each dimension... 
     long low_bound; 
     long upper_bound; 
     long stride; 
 } dims[63]; 
}; 


Figure 50. Fortran 90 example: descriptor representation 


In practice, of course, a "real" descriptor will have dimension substructures only for as many 
dimensions as are specified in the num_dims component. Let us use the notation desc<n> to 
indicate a specialization of the desc struct in which n is the bound for the dims component as 
well as the contents of the num_dims component. 


Because the arrays considered here come in two parts, it is necessary to distinguish the parts 
carefully. In particular, the "address of the variable" or equivalently, the "base address of the 
object" always refers to the descriptor. For arrays that do not come in two parts, an 
implementation can provide a descriptor anyway, thereby giving it two parts. (This may be 
convenient for general runtime support unrelated to debugging.) In this case the above 
vocabulary applies as stated. Alternatively, an implementation can do without a descriptor, in 
which case the "address of the variable", or equivalently the "base address of the object", refers 
to the "raw data" (the real data, the only thing around that can be the object). 


If an object has a descriptor, then the DWARF type for that object will have a 
DW_AT_data_location attribute. If an object does not have a descriptor, then usually the 
DWARF type for the object will not have a DW_AT_data_location. (See the following Ada 
example for a case where the type for an object without a descriptor does have an 
DW_AT_data_location attribute. In that case the object doubles as its own descriptor.) 


The Fortran 90 derived type array_ptr can now be redescribed in C-like terms that exposes 
some of the representation as in 
    struct array_ptr { 
 float   myvar; 
 desc<1> ap; 
    }; 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 191 


51


Similarly for variable arrays: 


    desc<1> arrays; 


(Recall that desc<1> indicates the 1-dimensional version of desc.) 


Finally, the following notation is useful: 


1. sizeof(type): size in bytes of entities of the given type 


2. offset(type, comp): offset in bytes of the comp component within an entity of the given 
type 


The DWARF description is shown in Figure . 


 


1$: DW_TAG_array_type 
     ! No name, default (Fortran) ordering, default stride 
     DW_AT_type(reference to base type REAL) 
     DW_AT_associated(machine=     ! Test 'assoc' flag 
         DW_OP_push_object_address 
         DW_OP_lit<n>      ! where n == offset(assoc) 
         DW_OP_plus 
         DW_OP_deref 
         DW_OP_lit1      ! mask for 'assoc' flag 
         DW_OP_and) 
     DW_AT_data_location(machine=    ! Get raw data address 
         DW_OP_push_object_address 
         DW_OP_lit<n>      ! where n == offset(base) 
         DW_OP_plus 
         DW_OP_deref) 
2$:     DW_TAG_subrange_type 
         ! No name, default stride 
         DW_AT_type(reference to base type INTEGER) 
         DW_AT_lower_bound(machine= 
      DW_OP_push_object_address 
      DW_OP_lit<n>     ! where n == 
         !   offset(desc, dims) + 
         !   offset(dims_str, lower_bound) 
      DW_OP_plus 
      DW_OP_deref) 
         DW_AT_upper_bound(machine= 
      DW_OP_push_object_address 
      DW_OP_lit<n>     ! where n == 
         !   offset(desc, dims) + 
         !   offset(dims_str, upper_bound) 
      DW_OP_plus 
      DW_OP_deref) 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 192  December 20, 2005 


         ! Note: for the m'th dimension, the second operator becomes 
         ! DW_OP_lit<x> where 
         !    x == offset(desc, dims) + 
         !  (m-1)*sizeof(dims_str) + 
         !  offset(dims_str, [lower|upper]_bound) 
         ! That is, the stack machine does not get longer for each  
         ! successive dimension (other than to express the larger 
                ! offsets involved). 
 
3$:     DW_TAG_structure_type 
     DW_AT_name("array_ptr") 
     DW_AT_byte_size(constant sizeof(REAL) + sizeof(desc<1>)) 
4$:     DW_TAG_member 
         DW_AT_name("myvar") 
         DW_AT_type(reference to base type REAL) 
         DW_AT_data_member_location(constant 0) 
5$:     DW_TAG_member 
         DW_AT_name("ap"); 
         DW_AT_type(reference to 1$) 
         DW_AT_data_member_location(constant sizeof(REAL)) 
 
6$:     DW_TAG_array_type 
     ! No name, default (Fortran) ordering, default stride 
     DW_AT_type(reference to 3$) 
     DW_AT_allocated(machine=     ! Test 'ptr_alloc' flag 
         DW_OP_push_object_address 
         DW_OP_lit<n>      ! where n == offset(ptr_alloc) 
         DW_OP_plus 
         DW_OP_deref 
         DW_OP_lit2      ! mask for 'ptr_alloc' flag 
         DW_OP_and) 
     DW_AT_data_location(machine=    ! Get raw data address 
         DW_OP_push_object_address 
         DW_OP_lit<n>      ! where n = offset(base) 
         DW_OP_plus 
         DW_OP_deref) 
7$:     DW_TAG_subrange_type 
         ! No name, default stride 
         DW_AT_type(reference to base type INTEGER) 
         DW_AT_lower_bound(machine= 
      DW_OP_push_object_address 
      DW_OP_lit<n>     ! where n == ... 
      DW_OP_plus 
      DW_OP_deref) 
         DW_AT_upper_bound(machine= 
      DW_OP_push_object_address 
      DW_OP_lit<n>     ! where n == ... 
      DW_OP_plus 
      DW_OP_deref) 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 193 


8$:     DW_TAG_variable 
 


     DW_AT_name("arrays") 
     DW_AT_type(reference to 6$) 
     DW_AT_location(machine= 
         ...as appropriate...)     ! Assume static allocation 


 


Figure 51. Fortran 90 example: DWARF description 


 


Suppose the program is stopped immediately following completion of the do loop. Suppose 
further that the user enters the following debug command: 


    debug> print arrays(5)%ap(2) 


Interpretation of this expression proceeds as follows: 


1) Lookup name arrays. We find that it is a variable, whose type is given by the unnamed type 
at 6$. Notice that the type is an array type. 


2) Find the 5th element of that array object. To do array indexing requires several pieces of 
information: 


a) the address of the array data 


b) the lower bounds of the array 


[To check that 5 is within bounds would require the upper bound too, but we’ll skip that 
for this example.] 


c) the stride 


For a), check for a DW_AT_data_location attribute. Since there is one, go execute the stack 
machine, whose result is the address needed. The object address used in this case is the object 
we are working on, namely the variable named arrays, whose address was found in step 1. 
(Had there been no DW_AT_data_location attribute, the desired address would be the same 
as the address from step 1.) 


For b), for each dimension of the array (only one in this case), go interpret the usual lower 
bound attribute. Again this is a stack machine, which again begins with 
DW_OP_push_object_address. This object is still arrays, from step 1, because we haven’t 
begun to actually perform any indexing yet. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 194  December 20, 2005 


For c), the default stride applies. Since there is no DW_AT_byte_stride attribute, use the size 
of the array element type, which is the size of type array_ptr (at 3$). 


Having acquired all the necessary data, perform the indexing operation in the usual manner—
which has nothing to do with any of the attributes involved up to now. Those just provide the 
actual values used in the indexing step. 


The result is an object within the memory that was dynamically allocated for arrays. 


3) Find the ap component of the object just identified, whose type is array_ptr. 


This is a conventional record component lookup and interpretation. It happens that the ap 
component in this case begins at offset 4 from the beginning of the containing object. 
Component ap has the unnamed array type defined at 1$ in the symbol table. 


4) Find the second element of the array object found in step 3. To do array indexing requires 
several pieces of information: 


a) the address of the array storage 


b) the lower bounds of the array 


[To check that 2 is within bounds we would require the upper bound too, but we’ll skip 
that for this example] 


c) the stride 


This is just like step 2), so the details are omitted. Recall that because the DWARF type 1$ has a 
DW_AT_data_location, the address that results from step 4) is that of a descriptor, and that 
address is the address pushed by the DW_OP_push_object_address operations in 1$ and 2$. 


Note: we happen to be accessing a pointer array here instead of an allocatable array; but because 
there is a common underlying representation, the mechanics are the same. There could be 
completely different descriptor arrangements and the mechanics would still be the same—only 
the stack machines would be different. 


 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 195 


52


 


53


D.2.2 Ada Example 


Figure  illustrates two kinds of Ada parameterized array, one embedded in a record. 
 


    M : INTEGER := <exp>; 
          VEC1 : array (1..M) of INTEGER; 


          subtype TEENY is INTEGER range 1..100; 
          type ARR is array (INTEGER range <>) of INTEGER; 


    type REC2(N : TEENY := 100) is record 
        VEC2 : ARR(1..N); 
    end record; 
 
    OBJ2B : REC2; 
 


Figure 52. Ada example: source fragment 


VEC1 illustrates an (unnamed) array type where the upper bound of the first and only dimension 
is determined at runtime. Ada semantics require that the value of an array bound is fixed at the 
time the array type is elaborated (where elaboration refers to the runtime executable aspects of 
type processing). For the purposes of this example, we assume that there are no other 
assignments to M so that it safe for the REC1 type description to refer directly to that variable 
(rather than a compiler generated copy). 


REC2 illustrates another array type (the unnamed type of component VEC2) where the upper 
bound of the first and only bound is also determined at runtime. In this case, the upper bound is 
contained in a discriminant of the containing record type. (A discriminant is a component of a 
record whose value cannot be changed independently of the rest of the record because that value 
is potentially used in the specification of other components of the record.)  


The DWARF description is shown in Figure . 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 196  December 20, 2005 


     DW_AT_type(reference to base type INTEGER) 


     DW_AT_type(reference to array type at 12$) 


Interesting aspects about this example are: 


1) The array VEC2 is “immediately” contained within structure REC2 (there is no 
intermediate descriptor or indirection), which is reflected in the absence of a 
DW_AT_data_location attribute on the array type at 28$. 


2) One of the bounds of VEC2 is nonetheless dynamic and part of the same containing 
record. It is described as a reference to a member, and the location of the upper bound is 
determined as for any member. That is, the location is determined using an address 
calculation relative to the base of the containing object. 
 
A consumer must notice that the referenced bound is a member of the same containing 
object and implicitly push the base address of the containing object just as for accessing 
a data member generally.. 


3) The lack of a subtype concept in DWARF means that DWARF types serve the role of 
subtypes and must replicate information from what should be the parent type. For this 
reason, DWARF for the unconstrained array ARR is not needed for the purposes of this 
example and therefore not shown. 


 
 
11$:    DW_TAG_variable 
     DW_AT_name("M") 


 
12$:    DW_TAG_array_type 
     ! No name, default (Ada) order, default stride 
     DW_AT_type(reference to base type INTEGER) 
13$:     DW_TAG_subrange_type 
         DW_AT_type(reference to base type INTEGER) 
         DW_AT_lower_bound(constant 1) 
         DW_AT_upper_bound(reference to variable M at 11$) 
 
14$:    DW_TAG_variable 
     DW_AT_name("VEC1") 


 
        . . . 
 
21$:    DW_TAG_subrange_type 
            DW_AT_name("TEENY") 
     DW_AT_type(reference to base type INTEGER) 
     DW_AT_lower_bound(constant 1) 
     DW_AT_upper_bound(constant 100) 
 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 197 


        . . . 
 
26$:    DW_TAG_structure_type 
     DW_AT_name("REC2") 
27$:     DW_TAG_member 
         DW_AT_name("N") 
         DW_AT_type(reference to subtype TEENY at 21$) 
         DW_AT_data_member_location(constant 0) 
28$:     DW_TAG_array_type 
         ! No name, default (Ada) order, default stride 
         ! Default data location 
         DW_AT_TYPE(reference to base type INTEGER) 
29$:         DW_TAG_subrange_type 
      DW_AT_type(reference to subrange TEENY at 21$) 
      DW_AT_lower_bound(constant 1) 
      DW_AT_upper_bound(reference to member N at 27$) 
30$:     DW_TAG_member 
         DW_AT_name("VEC2") 
         DW_AT_type(reference to array “subtype” at 28$) 
         DW_AT_data_member_location(machine= 
      DW_OP_lit<n> ! where n == offset(REC2, VEC2) 
      DW_OP_plus) 
 
 . . . 
 
41$:    DW_TAG_variable 
     DW_AT_name("OBJ2B") 
     DW_AT_type(reference to type REC2 at 26$) 
     DW_AT_location(...as appropriate...) 


 


Figure 53. Ada example: DWARF description 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 198  December 20, 2005 


D.3 Namespace Examples 


 


The C++ example in Figure 54 is used to illustrate the representation of namespaces. 
 


namespace { 
    int i; 
} 
 
namespace A { 
    namespace B { 
        int j; 
        int   myfunc (int a); 
        float myfunc (float f) { return f – 2.0; } 
        int   myfunc2(int a)   { return a + 2; } 
    } 
} 
 
namespace Y { 
    using A::B::j;  // (1) using declaration 
    int foo; 
} 
 
using A::B::j;   // (2) using declaration 
 
namespace Foo = A::B;  // (3) namespace alias 
 
using Foo::myfunc;  // (4) using declaration 
 
using namespace Foo;  // (5) using directive 
 
namespace A { 
    namespace B { 
        using namespace Y; // (6) using directive 
    int k; 
    } 
} 
 
int Foo::myfunc(int a) 
{ 
    i = 3; 
    j = 4; 
    return myfunc2(3) + j + i + a + 2; 
} 


Figure 54. Namespace example: source fragment 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 199 


55


 


The DWARF representation in Figure  is appropriate. 


 


 
1$: DW_TAG_basetype 
     DW_AT_name("int") 
     ... 
2$: DW_TAG_basetype 
     DW_AT_name("float") 
     ... 
6$: DW_TAG_namespace 
     ! no DW_AT_name attribute 
7$:     DW_TAG_variable 
  DW_AT_name("i") 
  DW_AT_type(reference to 1$) 
  DW_AT_location ... 
  ... 
 
10$: DW_TAG_namespace 
     DW_AT_name("A") 
20$:     DW_TAG_namespace 
  DW_AT_name("B") 
30$:  DW_TAG_variable 
      DW_AT_name("j") 
      DW_AT_type(reference to 1$) 
      DW_AT_location ... 
      ... 
34$:  DW_TAG_subprogram 
      DW_AT_name("myfunc") 
      DW_AT_type(reference to 1$) 
      ... 
36$:  DW_TAG_subprogram 
      DW_AT_name("myfunc") 
      DW_AT_type(reference to 2$) 
      ... 
38$:  DW_TAG_subprogram 
      DW_AT_name("myfunc2") 
      DW_AT_low_pc ... 
      DW_AT_high_pc ... 
      DW_AT_type(reference to 1$) 
      ... 
 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 200  December 20, 2005 


40$: DW_TAG_namespace 
     DW_AT_name("Y") 
     DW_TAG_imported_declaration  ! (1) using-declaration 
  DW_AT_import(reference to 30$) 
     DW_TAG_variable 
  DW_AT_name("foo") 
  DW_AT_type(reference to 1$) 
  DW_AT_location ... 
  ... 
 
 DW_TAG_imported_declaration   ! (2) using declaration 
     DW_AT_import(reference to 30$) 
 
 DW_TAG_imported_declaration   ! (3) namespace alias 
     DW_AT_name("Foo") 
     DW_AT_import(reference to 20$) 
 
 DW_TAG_imported_declaration  ! (4) using declaration 
     DW_AT_import(reference to 34$) !      -  part 1 
 DW_TAG_imported_declaration  ! (4) using declaration 
     DW_AT_import(reference to 36$) !      -  part 2 
 
 DW_TAG_imported_module    ! (5) using directive 
     DW_AT_import(reference to 20$) 
 
 DW_TAG_namespace 
     DW_AT_extension(reference to 10$) 
     DW_TAG_namespace 
  DW_AT_extension(reference to 20$) 
  DW_TAG_imported_module   ! (6) using directive 
      DW_AT_import(reference to 40$) 
  DW_TAG_variable 
      DW_AT_name("k") 
      DW_AT_type(reference to 1$) 
      DW_AT_location ... 
      ... 
 
60$: DW_TAG_subprogram 
     DW_AT_name("myfunc") 
     DW_AT_specification(reference to 34$) 
     DW_AT_low_pc ... 
     DW_AT_high_pc ... 
     ... 


Figure 55. Namespace example: DWARF description 


 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 201 


56


7


               ... 


D.4 Member Function Example 
Consider the member function example fragment in Figure . 
class A 
{ 
     void func1(int x1); 
     void func2() const; 
     static void func3(int x3); 
}; 


Figure 56. Member function example: source fragment 
 
The DWARF description in Figure 5  is appropriate. 
 
1$:    DW_TAG_unspecified_type 
           DW_AT_name("void") 
           ... 
2$     DW_TAG_base_type 
           DW_AT_name("int") 
           ... 
3$:    DW_TAG_class_type 
           DW_AT_name("A") 
           ... 
4$:        DW_TAG_pointer_type 
               DW_AT_type(reference to 3$) 
               ... 
5$:        DW_TAG_const_type 
               DW_AT_type(reference to 3$) 


6$:        DW_TAG_pointer_type 
               DW_AT_type(reference to 5$) 
               ... 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 202  December 20, 2005 


7$:        DW_TAG_subprogram 
               DW_AT_name("func1") 
               DW_AT_type(reference to 1$) 
               DW_AT_object_pointer(reference to 8$) 
                   ! References a formal parameter in this member function 
               ... 
8$:            DW_TAG_formal_parameter 
                   DW_AT_artificial(true) 
                   DW_AT_name("this") 
                   DW_AT_type(reference to 4$) 
                       ! Makes type of 'this' as 'A*' => 
                       ! func1 has not been marked const or volatile 
                   DW_AT_location ... 
                   ... 
9$:            DW_TAG_formal_parameter 
                   DW_AT_name(x1) 
                   DW_AT_type(reference to 2$) 
                   ... 
10$:       DW_TAG_subprogram 
               DW_AT_name("func2") 
               DW_AT_type(reference to 1$) 
               DW_AT_object_pointer(reference to 11$) 
                   ! References a formal parameter in this member function 
               ... 
11$:           DW_TAG_formal_parameter 
                   DW_AT_artificial(true) 
                   DW_AT_name("this") 
                   DW_AT_type(reference to 6$) 
                       ! Makes type of 'this' as 'A const*' => 
                       ! func2 marked as const 
                   DW_AT_location ... 
                   ... 
12$:       DW_TAG_subprogram 
               DW_AT_name("func3") 
               DW_AT_type(reference to 1$) 
               ... 
                   ! No 'this' formal parameter => func3 is static 
13$:           DW_TAG_formal_parameter 
                   DW_AT_name(x3) 
                   DW_AT_type(reference to 2$) 
                   ... 
 


Figure 57. Member function example: DWARF description 
 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 203 


58


D.5 Line Number Program Example 


Consider the simple source file and the resulting machine code for the Intel 8086 processor in 
Figure .  
 


1: int 
2: main() 
    0x239: push pb 
    0x23a: mov  bp,sp 
3:  { 
4:  printf(“Omit needless words\n”); 
    0x23c: mov  ax,0xaa 
    0x23f: push ax 
    0x240: call _printf 
    0x243: pop  cx 
5:  exit(0); 
    0x244: xor  ax,ax 
    0x246: push ax 
    0x247: call _exit 
    0x24a: pop  cx 
6:  } 
    0x24b: pop  bp 
    0x24c: ret 
7: 
    0x24d: 


Figure 58. Line number program example: machine code 


 


Suppose the line number program header specifies the following:  
version                      3 
minimum_instruction_length   1 
opcode_base                 10 ! Opcodes 10-12 not needed 
line_base                    1 
line_range                  15 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 204  December 20, 2005 


59


 


60


 


 


Figure  shows one encoding of the line number program, which occupies 12 bytes (the opcode 
SPECIAL(m,n) indicates the special opcode generated for a line increment of m and an address 
increment of n). 


Opcode Operand Byte Stream 
-------------------------------------------------------------------------------- 
DW_LNS_advance_pc LEB128(0x239) 0x2, 0xb9, 0x04 
SPECIAL(2, 0)  0xb 
SPECIAL(2, 3)  0x38 
SPECIAL(1, 8)  0x82 
SPECIAL(1, 7)  0x73 
DW_LNS_advance_pc  LEB128(2) 0x2, 0x2 
DW_LNE_end_sequence  0x0, 0x1, 0x1 


Figure 59. Line number program example: one encoding 


 


Figure  shows an alternate encoding of the same program using standard opcodes to advance 
the program counter; this encoding occupies 22 bytes. 


Opcode  Operand Byte Stream 
------------------------------------------------------------------------- 
DW_LNS_fixed_advance_pc 0x239 0x9, 0x39, 0x2 
SPECIAL(2, 0)  0xb 
DW_LNS_fixed_advance_pc 0x3 0x9, 0x3, 0x0 
SPECIAL(2, 0)  0xb 
DW_LNS_fixed_advance_pc 0x8 0x9, 0x8, 0x0 
SPECIAL(1, 0)  0xa 
DW_LNS_fixed_advance_pc 0x7 0x9, 0x7, 0x0 
SPECIAL(1, 0)  0xa 
DW_LNS_fixed_advance_pc 0x2 0x9, 0x2, 0x0 
DW_LNE_end_sequence  0x0, 0x1, 0x1  


Figure 60. Line number program example: alternate encoding 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 205 


D.6 Call Frame Information Example 


The following example uses a hypothetical RISC machine in the style of the Motorola 88000.  


• Memory is byte addressed.  


• Instructions are all 4 bytes each and word aligned.  


• Instruction operands are typically of the form:  
 
     <destination.reg>, <source.reg>, <constant>  


• The address for the load and store instructions is computed by adding the contents of the 
source register with the constant.  


• There are 8 4-byte registers:  


R0 always 0 
R1 holds return address on call 
R2-R3 temp registers (not preserved on call) 
R4-R6 preserved on call 
R7 stack pointer. 


• The stack grows in the negative direction. 


• The architectural ABI committee specifies that the stack pointer (R7) is the same as the CFA 


The following are two code fragments from a subroutine called foo that uses a frame pointer (in 
addition to the stack pointer). The first column values are byte addresses. <fs> denotes the stack 
frame size in bytes, namely 12. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 206  December 20, 2005 


62


 


 
        ;; start prologue 
foo     sub   R7, R7, <fs>      ; Allocate frame 
foo+4   store R1, R7, (<fs>-4)  ; Save the return address 
foo+8   store R6, R7, (<fs>-8)  ; Save R6 
foo+12  add   R6, R7, 0         ; R6 is now the Frame ptr 
foo+16  store R4, R6, (<fs>-12) ; Save a preserved reg 
        ;; This subroutine does not change R5 
        ... 
        ;; Start epilogue (R7 is returned to entry value) 
foo+64  load R4, R6, (<fs>-12)  ; Restore R4 
foo+68  load R6, R7, (<fs>-8)   ; Restore R6 
foo+72  load R1, R7, (<fs>-4)   ; Restore return address 
foo+76  add  R7, R7, <fs>       ; Deallocate frame 
foo+80  jump R1                 ; Return 
foo+84 


Figure 61. Call frame information example: machine code fragments 


 


The abstract table (see Section 6.4.1) for the foo subroutine is shown in Figure . 
Corresponding fragments from the .debug_frame section are shown in Figure 63. 


Location CFA       R0  R1  R2  R3  R4   R5  R6   R7  R8 
 
foo      [R7]+0    s   u   u   u   s    s   s    a   r1 


foo+64   [R6]+fs   s   u   u   u   c-12 s   c-8  a   c-4 


foo+4    [R7]+fs   s   u   u   u   s    s   s    a   r1 
foo+8    [R7]+fs   s   u   u   u   s    s   s    a   c-4 
foo+12   [R7]+fs   s   u   u   u   s    s   c-8  a   c-4 
foo+16   [R6]+fs   s   u   u   u   s    s   c-8  a   c-4 
foo+20   [R6]+fs   s   u   u   u   c-12 s   c-8  a   c-4 


foo+68   [R6]+fs   s   u   u   u   s    s   c-8  a   c-4 
foo+72   [R7]+fs   s   u   u   u   s    s   s    a   c-4 
foo+76   [R7]+fs   s   u   u   u   s    s   s    a   r1 
foo+80   [R7]+0    s   u   u   u   s    s   s    a   r1 
 


Figure 62. Call frame information example: conceptual matrix 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 207 


 


62


 


The following notes apply to Figure : 
1. R8 is the return address 
2. s = same_value rule 
3. u = undefined rule 
4. rN = register(N) rule 
5. cN = offset(N) rule 
6. a = architectural rule 


 


Address Value Comment 
 
cie 32 length 
cie+4 0xffffffff CIE_id 
cie+8 3 version 
cie+9 0 augmentation 
cie+10 4 code_alignment_factor, <caf> 
cie+11 -4 data_alignment_factor, <daf> 
cie+12 8 R8 is the return addr. 
cie+13 DW_CFA_def_cfa (7, 0) CFA = [R7]+0 
cie+16 DW_CFA_same_value (0) R0 not modified (=0) 
cie+18 DW_CFA_undefined (1) R1 scratch 
cie+20 DW_CFA_undefined (2) R2 scratch 
cie+22 DW_CFA_undefined (3) R3 scratch 
cie+24 DW_CFA_same_value (4) R4 preserve 
cie+26 DW_CFA_same_value (5) R5 preserve 
cie+28 DW_CFA_same_value (6) R6 preserve 
cie+30 DW_CFA_same_value (7) R7 preserve 
cie+32 DW_CFA_register (8, 1) R8 is in R1 
cie+35 DW_CFA_nop padding 
cie+36 


Figure 63. Call frame information example: common information entry encoding 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 208  December 20, 2005 


Address Value Comment 
 
fde  40 length 
fde+4  cie CIE_ptr 
fde+8  foo initial_location 
fde+12 84 address_range 
fde+16 DW_CFA_advance_loc(1) instructions 
fde+17 DW_CFA_def_cfa_offset(12) <fs> 
fde+19 DW_CFA_advance_loc(1) 4/<caf> 
fde+20 DW_CFA_offset(8,1) -4/<daf> (second parameter) 
fde+22 DW_CFA_advance_loc(1) 
fde+23 DW_CFA_offset(6,2) -8/<daf> (2nd parameter) 
fde+25 DW_CFA_advance_loc(1) 
fde+26 DW_CFA_def_cfa_register(6) 
fde+28 DW_CFA_advance_loc(1) 
fde+29 DW_CFA_offset(4,3) -12/<daf> (2nd parameter) 
fde+31 DW_CFA_advance_loc(11) 44/<caf> 
fde+32 DW_CFA_restore(4) 
fde+33 DW_CFA_advance_loc(1) 
fde+34 DW_CFA_restore(6) 
fde+35 DW_CFA_def_cfa_register(7) 
fde+37 DW_CFA_advance_loc(1) 
fde+38 DW_CFA_restore(8) 
fde+39 DW_CFA_advance_loc(1) 
fde+40 DW_CFA_def_cfa_offset(0) 
fde+42 DW_CFA_nop padding 
fde+43 DW_CFA_nop padding 
fde+44 


Figure 64. Call frame information example: frame description entry encoding 


 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 209 


65


D.7 Inlining Examples 


The pseudo-source in Figure  is used to illustrate the use of DWARF to describe inlined 
subroutine calls. This example involves a nested subprogram INNER that makes uplevel 
references to the formal parameter and local variable of the containing subprogram OUTER. 


 


    inline procedure OUTER (OUTER_FORMAL : integer) = 
         begin 
  
         OUTER_LOCAL : integer; 
  
         procedure INNER (INNER_FORMAL : integer) = 
             begin 
  
             INNER_LOCAL : integer; 
 
             print(INNER_FORMAL + OUTER_LOCAL); 
  
             end; 
  
         INNER(OUTER_LOCAL); 
         ... 
         INNER(31); 
 
         end; 
  
     ! Call OUTER 
     ! 
     OUTER(7); 


Figure 65. Inlining examples: pseudo-source fragment 


 


There are several approaches that a compiler might take to inlining for this sort of example. This 
presentation considers three such approaches, all of which involve inline expansion of 
subprogram OUTER. (If OUTER is not inlined, the inlining reduces to a simpler single level 
subset of the two level approaches considered here.)  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 210  December 20, 2005 


66


66


65 67


The approaches are: 


1. Inline both OUTER and INNER in all cases  


2. Inline OUTER, multiple INNERs 


Treat INNER as a non-inlinable part of OUTER, compile and call a distinct normal version 
of INNER defined within each inlining of OUTER. 


3. Inline OUTER, one INNER 


Compile INNER as a single normal subprogram which is called from every inlining of 
OUTER. 


This discussion does not consider why a compiler might choose one of these approaches; it 
considers only how to describe the result. 


In the examples that follow in this section, the debugging information entries are given 
mnemonic labels of the following form  


    <io>.<ac>.<n>.<s> 


where <io> is either INNER or OUTER to indicate to which subprogram the debugging 
information entry applies, <ac> is either AI or CI to indicate "abstract instance" or "concrete 
instance" respectively, <n> is the number of the alternative being considered, and <s> is a 
sequence number that distinguishes the individual entries. There is no implication that symbolic 
labels, nor any particular naming convention, are required in actual use. 


For conciseness, declaration coordinates and call coordinates are omitted. 


D.7.1 Alternative #1: inline both OUTER and INNER 


A suitable abstract instance for an alternative where both OUTER and INNER are always inlined 
is shown in Figure .  


Notice in Figure  that the debugging information entry for INNER (labelled INNER.AI.1.1) is 
nested in (is a child of) that for OUTER (labelled OUTER.AI.1.1). Nonetheless, the abstract 
instance tree for INNER is considered to be separate and distinct from that for OUTER. 


The call of OUTER shown in Figure  might be described as shown in Figure . 


 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 211 


        ! Abstract instance for OUTER 
        ! 
OUTER.AI.1.1: 
        DW_TAG_subprogram 
            DW_AT_name("OUTER") 
            DW_AT_inline(DW_INL_declared_inlined) 
            ! No low/high PCs 
OUTER.AI.1.2: 
            DW_TAG_formal_parameter 
                DW_AT_name("OUTER_FORMAL") 
                DW_AT_type(reference to integer) 
                ! No location 
OUTER.AI.1.3: 
            DW_TAG_variable 
                DW_AT_name("OUTER_LOCAL") 
                DW_AT_type(reference to integer) 
                ! No location 
            ! 
            ! Abstract instance for INNER 
            ! 
INNER.AI.1.1: 
            DW_TAG_subprogram 
                DW_AT_name("INNER") 
                DW_AT_inline(DW_INL_declared_inlined) 
                ! No low/high PCs 
INNER.AI.1.2:   DW_TAG_formal_parameter 
                    DW_AT_name("INNER_FORMAL") 
                    DW_AT_type(reference to integer) 
                    ! No location 
INNER.AI.1.3:   DW_TAG_variable 
                    DW_AT_name("INNER_LOCAL") 
                    DW_AT_type(reference to integer) 
                    ! No location 
                ... 
                0 
 
            ! No DW_TAG_inlined_subroutine (concrete instance) 
     ! for INNER corresponding to calls of INNER 
 
            ... 
            0 


 


Figure 66. Inlining example #1: abstract instance 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 212  December 20, 2005 


        ! Concrete instance for call "OUTER(7)" 
 ! 
OUTER.CI.1.1: 
        DW_TAG_inlined_subroutine 
            ! No name 
            DW_AT_abstract_origin(reference to OUTER.AI.1.1) 
            DW_AT_low_pc(...) 
            DW_AT_high_pc(...) 
OUTER.CI.1.2: 
            DW_TAG_formal_parameter 
                ! No name 
                DW_AT_abstract_origin(reference to OUTER.AI.1.2) 
  DW_AT_const_value(7) 
OUTER.CI.1.3: 
            DW_TAG_variable 
                ! No name 
                DW_AT_abstract_origin(reference to OUTER.AI.1.3) 
                DW_AT_location(...) 
            ! 
            ! No DW_TAG_subprogram (abstract instance) for INNER 
            ! 
            ! Concrete instance for call INNER(OUTER_LOCAL) 
            !  
INNER.CI.1.1: 
            DW_TAG_inlined_subroutine 
                ! No name 
                DW_AT_abstract_origin(reference to INNER.AI.1.1) 
                DW_AT_low_pc(...) 
                DW_AT_high_pc(...) 
                DW_AT_static_link(...) 
INNER.CI.1.2:   DW_TAG_formal_parameter 
                    ! No name 
                    DW_AT_abstract_origin(reference to INNER.AI.1.2) 
                    DW_AT_location(...) 
INNER.CI.1.3:   DW_TAG_variable 
                    ! No name 
                    DW_AT_abstract_origin(reference to INNER.AI.1.3) 
                    DW_AT_location(...) 
                ... 
                0 
 
     ! Another concrete instance of INNER within OUTER 
     ! for the call "INNER(31)" 
 
            ... 
            0 
 


Figure 67. Inlining example #1: concrete instance 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 213 


68  


66


9  


69


D.7.2 Alternative #2: Inline OUTER, multiple INNERs 


In the second alternative we assume that subprogram INNER is not inlinable for some reason, 
but subprogram OUTER is inlinable. Each concrete inline instance of OUTER has its own 
normal instance of INNER. The abstract instance for OUTER, which includes INNER, is shown 
in Figure .


Note that the debugging information in this Figure differs from that in Figure  in that INNER 
lacks a DW_AT_inline attribute and therefore is not a distinct abstract instance. INNER is 
merely an out-of-line routine that is part of OUTER’s abstract instance. This is reflected in the 
Figure by the fact that the labels for INNER use the substring OUTER instead of INNER. 


A resulting concrete inline instance of OUTER is shown in Figure 6 .


Notice in Figure  that OUTER is expanded as a concrete inlined instance, and that INNER is 
nested within it as a concrete out-of-line subprogram. Because INNER is cloned for each inline 
expansion of OUTER, only the invariant attributes of INNER (for example, DW_AT_name) are 
specified in the abstract instance of OUTER, and the low-level, instance-specific attributes of 
INNER (for example, DW_AT_low_pc) are specified in each concrete instance of OUTER. 


The several calls of INNER within OUTER are compiled as normal calls to the instance of 
INNER that is specific to the same instance of OUTER that contains the calls.  


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 214  December 20, 2005 


        ! Abstract instance for OUTER 
        ! 
OUTER.AI.2.1: 
        DW_TAG_subprogram 
            DW_AT_name("OUTER") 
            DW_AT_inline(DW_INL_declared_inlined) 
            ! No low/high PCs 
OUTER.AI.2.2: 
            DW_TAG_formal_parameter 
                DW_AT_name("OUTER_FORMAL") 
                DW_AT_type(reference to integer) 
                ! No location 
OUTER.AI.2.3: 
            DW_TAG_variable 
                DW_AT_name("OUTER_LOCAL") 
                DW_AT_type(reference to integer) 
                ! No location 
            ! 
            ! Nested out-of-line INNER subprogram 
            ! 
OUTER.AI.2.4: 
            DW_TAG_subprogram 
                DW_AT_name("INNER") 
                ! No DW_AT_inline 
                ! No low/high PCs, frame_base, etc. 
OUTER.AI.2.5: 
                DW_TAG_formal_parameter 
                    DW_AT_name("INNER_FORMAL") 
                    DW_AT_type(reference to integer) 
                    ! No location 
OUTER.AI.2.6:   DW_TAG_variable 
                    DW_AT_name("INNER_LOCAL") 
                    DW_AT_type(reference to integer) 
                    ! No location 
                ... 
                0 
             ... 
             0 


 


Figure 68. Inlining example #2: abstract instance 


 


 







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 215 


            DW_AT_abstract_origin(reference to OUTER.AI.2.1) 


                DW_AT_location(...) 


OUTER.CI.2.5: 


            ... 


        ! Concrete instance for call "OUTER(7)" 
        ! 
OUTER.CI.2.1: 
        DW_TAG_inlined_subroutine 
            ! No name 


            DW_AT_low_pc(...) 
            DW_AT_high_pc(...) 
OUTER.CI.2.2: 
            DW_TAG_formal_parameter 
                ! No name 
                DW_AT_abstract_origin(reference to OUTER.AI.2.2) 
                DW_AT_location(...) 
OUTER.CI.2.3: 
            DW_TAG_variable 
                ! No name 
                DW_AT_abstract_origin(reference to OUTER.AI.2.3) 


            ! 
            ! Nested out-of-line INNER subprogram 
            ! 
OUTER.CI.2.4: 
            DW_TAG_subprogram 
                ! No name 
                DW_AT_abstract_origin(reference to OUTER.AI.2.4) 
                DW_AT_low_pc(...) 
                DW_AT_high_pc(...) 
                DW_AT_frame_base(...) 
                DW_AT_static_link(...) 


                DW_TAG_formal_parameter 
                    ! No name 
                    DW_AT_abstract_origin(reference to OUTER.AI.2.5) 
                    DW_AT_location(...) 
OUTER.CI.2.6: 
                DW_TAG_variable 
                    ! No name 
                    DW_AT_abstract_origin(reference to OUTER.AT.2.6) 
                    DW_AT_location(...) 
                ... 
                0 


            0 


Figure 69. Inlining example #2: concrete instance 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 216  December 20, 2005 


70


71


D.7.3 Alternative #3: inline OUTER, one normal INNER 


In the third approach, one normal subprogram for INNER is compiled which is called from all 
concrete inline instances of OUTER. The abstract instance for OUTER is shown in Figure . 


The most distinctive aspect of that Figure is that subprogram INNER exists only within the 
abstract instance of OUTER, and not in OUTER’s concrete instance. In the abstract instance of 
OUTER, the description of INNER has the full complement of attributes that would be expected 
for a normal subprogram. While attributes such as DW_AT_low_pc, DW_AT_high_pc, 
DW_AT_location, and so on, typically are omitted from an abstract instance because they are not 
invariant across instances of the containing abstract instance, in this case those same attributes 
are included precisely because they are invariant--there is only one subprogram INNER to be 
described and every description is the same. 


A concrete inline instance of OUTER is illustrated in Figure . 


Notice in Figure 71 that there is no DWARF representation for INNER at all; the representation 
of INNER does not vary across instances of OUTER and the abstract instance of OUTER 
includes the complete description of INNER, so that the description of INNER may be (and for 
reasons of space efficiency, should be) omitted from each concrete instance of OUTER. 


There is one aspect of this approach that is problematical from the DWARF perspective. The 
single compiled instance of INNER is assumed to access up-level variables of OUTER; however, 
those variables may well occur at varying positions within the frames that contain the concrete 
inline instances. A compiler might implement this in several ways, including the use of 
additional compiler generated parameters that provide reference parameters for the up-level 
variables, or a compiler generated static link like parameter that points to the group of up-level 
entities, among other possibilities. In either of these cases, the DWARF description for the 
location attribute of each uplevel variable needs to be different if accessed from within INNER 
compared to when accessed from within the instances of OUTER. An implementation is likely to 
require vendor-specific DWARF attributes and/or debugging information entries to describe such 
cases. 


Note that in C++, a member function of a class defined within a function definition does not 
require any vendor-specific extensions because the C++ language disallows access to entities 
that would give rise to this problem. (Neither extern variables nor static members require any 
form of static link for accessing purposes.)  


  







 Appendix -- Examples (informative) 
 
 


 
 
December 20, 2005  Page 217 


            ! Normal INNER 


            DW_TAG_subprogram 


                DW_TAG_variable 


        ! Abstract instance for OUTER 
        ! 
OUTER.AI.3.1: 
        DW_TAG_subprogram 
            DW_AT_name("OUTER") 
            DW_AT_inline(DW_INL_declared_inlined) 
            ! No low/high PCs 
OUTER.AI.3.2: 
            DW_TAG_formal_parameter 
                DW_AT_name("OUTER_FORMAL") 
                DW_AT_type(reference to integer) 
                ! No location 
OUTER.AI.3.3: 
            DW_TAG_variable 
                DW_AT_name("OUTER_LOCAL") 
                DW_AT_type(reference to integer) 
                ! No location 
            ! 


            ! 
OUTER.AI.3.4: 


                DW_AT_name("INNER") 
                DW_AT_low_pc(...) 
                DW_AT_high_pc(...) 
                DW_AT_frame_base(...) 
                DW_AT_static_link(...) 
OUTER.AI.3.5: 
                DW_TAG_formal_parameter 
                    DW_AT_name("INNER_FORMAL") 
                    DW_AT_type(reference to integer) 
                    DW_AT_location(...) 
OUTER.AI.3.6: 


                    DW_AT_name("INNER_LOCAL") 
                    DW_AT_type(reference to integer) 
                    DW_AT_location(...) 
                ... 
                0 
            ... 
            0 


 


Figure 70. Inlining example #3: abstract instance 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 218  December 20, 2005 


            DW_TAG_formal_parameter 


 


        ! Concrete instance for call "OUTER(7)" 
        ! 
OUTER.CI.3.1: 
        DW_TAG_inlined_subroutine 
            ! No name 
            DW_AT_abstract_origin(reference to OUTER.AI.3.1) 
            DW_AT_low_pc(...) 
            DW_AT_high_pc(...) 
            DW_AT_frame_base(...) 
OUTER.CI.3.2: 


                ! No name 
                DW_AT_abstract_origin(reference to OUTER.AI.3.2) 
                ! No type 
                DW_AT_location(...) 
OUTER.CI.3.3: 
            DW_TAG_variable 
                ! No name 
                DW_AT_abstract_origin(reference to OUTER.AI.3.3) 
                ! No type 
                DW_AT_location(...) 
 
            ! No DW_TAG_subprogram for "INNER" 
 
            ... 
            0 


 


Figure 71. Inlining example #3: concrete instance 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 219  December 20, 2005 


 


Appendix E -- DWARF Compression and Duplicate Elimination 
(informative) 


 


DWARF can use a lot of disk space. 


This is especially true for C++, where the depth and complexity of headers can mean that many, 
many (possibly thousands of) declarations are repeated in every compilation unit. C++ templates 
can also mean that some functions and their DWARF descriptions get duplicated.  


This Appendix describes techniques for using the DWARF representation in combination with 
features and characteristics of some common object file representations to reduce redundancy 
without losing information. It is worth emphasizing that none of these techniques are necessary 
to provide a complete and accurate DWARF description; they are solely concerned with 
reducing the size of DWARF information.  


The techniques described here depend more directly and more obviously on object file concepts 
and linker mechanisms than most other parts of DWARF. While the presentation tends to use the 
vocabulary of specific systems, this is primarily to aid in describing the techniques by appealing 
to well-known terminology. These techniques can be employed on any system that supports 
certain general functional capabilities (described below). 


E.1 Overview 


The general approach is to break up the debug information of a compilation into separate 
compilation units, each consisting of one or more sections. By arranging that a sufficiently 
similar partitioning occurs in other compilations, a suitable system linker can delete redundant 
groups of sections when combining object files. 


The following uses some traditional section naming here but aside from the DWARF sections, 
the names are just meant to suggest traditional contents as a way of explaining the approach, not 
to be limiting.  


A traditional relocatable object output from a single compilation might contain sections named: 
        .data 
        .text 
        .debug_info 
        .debug_abbrev 
        .debug_line 
        .debug_aranges 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 220  December 20, 2005 


A relocatable object from a compilation system attempting duplicate DWARF elimination might 
contain sections as in: 
        .data 
        .text 
        .debug_info 
        .debug_abbrev 
        .debug_line 
        .debug_aranges 


followed (or preceded, the order is not significant) by a series of section groups: 
==== Section group 1 
        .debug_info 
        .debug_abbrev 
        .debug_line 
 
==== ... 
 
==== Section group N 
        .debug_info 
        .debug_abbrev 
        .debug_line 


where each section group might or might not contain executable code (.text sections) or data 
(.data sections).  


A section group is a named set of section contributions within an object file with the property 
that the entire set of section contributions must be retained or discarded as a whole; no partial 
elimination is allowed. Section groups can generally be handled by a linker in two ways: 


1. Given multiple identical (duplicate) section groups, one of them is chosen to be kept and 
used, while the rest are discarded. 


2. Given a section group that is not referenced from any section outside of the section group, 
the section group is discarded. 


3. Which handling applies may be indicated by the section group itself and/or selection of 
certain linker options.  


For example, if a linker determins that section group 1 from A.o and section group 3 from B.o 
are identical, it could discard one group and arrange that all references in A.o and B.o apply to 
the remaining one of the two identical section groups. This saves space.  


An important part of making it possible to “redirect” references to the surviving section group is 
the use of consistently chosen linker global symbols for referring to locations within each section 
group. It follows that references are simply to external names and the linker already knows how 
to match up references and definitions.  







 Appendix -- DWARF Compression and Duplicate Elimination (informative) 
 
 


 
 
December 20, 2005  Page 221 


Implementations should clearly document their naming conventions.  


What is minimally needed from the object file format and system linker (outside of DWARF 
itself, and normal object/linker facilities such as simple relocations) are:  


1. A means of referencing from inside one .debug_info compilation unit to another 
.debug_info compilation unit (DW_FORM_ref_addr provides this).  


2. A means of having multiple contributions to specific sections (for example, .debug_info, 
and so on) in a single object file.  


3. A means of identifying a section group (giving it a name).  


4. A means of identifying which sections go together to make up a section group, so that the 
group can be treated as a unit (kept or discarded). 


5. A means of indicating how each section group should be processed by the linker. 


The notion of section and section contribution used here corresponds closely to the similarly 
named concepts in the ELF object file representation. The notion of section group is an 
abstraction of common extensions of the ELF representation widely known as “COMDATs” or 
“COMDAT sections”. (Other object file representations provide COMDAT-style mechanisms as 
well.) There are several variations in the COMDAT schemes in common use, any of which 
should be sufficient for the purposes of the DWARF duplicate elimination techniques described 
here. 


E.2 Naming and Usage Considerations 


A precise description of the means of deriving names usable by the linker to access DWARF 
entities is not part of this specification. Nonetheless, an outline of a usable approach is given here 
to make this more understandable and to guide implementors.  


In the following, it will be helpful to refer to the examples in Figure 72 through Figure 79 of 
Section E.3.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 222  December 20, 2005 


E.2.1 Section Group Names 


Section groups must have a section group name. For the subsequent C++ example, a name like 


    <producer-prefix>.<file-designator>.<gid-number> 


will suffice, where  


• <producer-prefix> is some string specific to the producer, which has a language-
designation embedded in the name when appropriate. (Alternatively, the language name 
could be embedded in the <gid-number>).  


• <file-designator> names the file, such as wa.h in the example.  


• <gid-number> is a string generated to identify the specific wa.h header file in such a way 
that  


• a 'matching' output from another compile generates the same <gid-number>, and 


• a non-matching output (say because of #defines) generates a different <gid-number>.  


It may be useful to think of a <gid-number> as a kind of “digital signature” that allows a fast 
test for the equality of two section groups.  


So, for example, the section group corresponding to file wa.h above is given the name 
my.compiler.company.cpp.wa.h.123456. 


E.2.2 Debugging Information Entry Names 


Global labels for debugging information entries (need explained below) within a section group 
can be given names of the form 


        <prefix>.<file-designator>.<gid-number>.<die-number>  


such as  


        my.compiler.company.wa.h.123456.987 







 Appendix -- DWARF Compression and Duplicate Elimination (informative) 
 
 


 
 
December 20, 2005  Page 223 


E.2.3 


where  


• <prefix> distinguishes this as a DWARF debug info name, and should identify the producer 
and, when appropriate, the language.  


• <file-designator> and <gid-number> are as above.  


• <die-number> could be a number sequentially assigned to entities (tokens, perhaps) found 
during compilation.  


In general, every point in the section group .debug_info that could be referenced from outside 
by any compilation unit must normally have an external name generated for it in the linker 
symbol table, whether the current compilation references all those points or not.  


The completeness of the set of names generated is a quality of implementation issue.  


It is up to the producer to ensure that if <die-numbers> in separate compilations would not match 
properly then a distinct <gid-number> is generated.  


Note that only section groups that are designated as duplicate-removal-applies actually require 
the 


       <prefix>.<file-designator>.<gid-number>.<die-number> 


external labels for debugging information entries as all other section group sections can use 
'local' labels (section-relative relocations).  


(This is a consequence of separate compilation, not a rule imposed by this document).  


Local labels use references with form DW_FORM_ref4 or DW_FORM_ref8 (these are affected 
by relocations so DW_FORM_ref_udata, DW_FORM_ref1 and DW_FORM_ref2 are normally 
not usable and DW_FORM_ref_addr is not necessary for a local label).  


Use of DW_TAG_compile_unit versus DW_TAG_partial_unit 


A section group compilation unit that uses DW_TAG_compile_unit is like any other compilation 
unit, in that its contents are evaluated by consumers as though it were an ordinary compilation 
unit.  


A #include directive appearing outside any other declarations is a good candidate to be 
represented using DW_TAG_compile_unit. However, a #include appearing inside a C++ 
namespace declaration or a function, for example, is not because the entities included are not 
necessarily file level entities. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 224  December 20, 2005 


E.2.4 


A DW_TAG_imported_unit debugging information entry refers to a DW_TAG_compile_unit or 
DW_TAG_partial_unit debugging information entry to specify that the DW_TAG_compile_unit 
or DW_TAG_partial_unit contents logically appear at the point of the DW_TAG_imported_unit 
entry.  


E.2.5 


This also applies to Fortran INCLUDE lines when declarations are included into a procedure or 
module context.  


Consequently a compiler must use DW_TAG_partial_unit (instead of DW_TAG_compile_unit) 
in a section group whenever the section group contents are not necessarily globally visible. This 
directs consumers to ignore that compilation unit when scanning top level declarations and 
definitions.  


The DW_TAG_partial_unit compilation unit will be referenced from elsewhere and the 
referencing locations give the appropriate context for interpreting the partial compilation unit.  


A DW_TAG_partial_unit may have, as appropriate, any of the attributes assigned to a 
DW_TAG_compile_unit.  


Use of DW_TAG_imported_unit  


A DW_TAG_imported_unit debugging information entry has an DW_AT_import attribute 
referencing a DW_TAG_compile_unit or DW_TAG_partial_unit debugging information entry.  


Use of DW_FORM_ref_addr 


Use DW_FORM_ref_addr to reference from one compilation unit's debugging information 
entries to those of another compilation unit. 


When referencing into a removable section group .debug_info from another .debug_info 
(from anywhere), the  


       <prefix>.<file-designator>.<gid-number>.<die-number> 


name should be used for an external symbol and a relocation generated based on that name.  


When referencing into a non-section group .debug_info, from another .debug_info (from 
anywhere) DW_FORM_ref_addr is still the form to be used, but a section-relative relocation 
generated by use of a non-exported name (often called an “internal name”) may be used for 
references within the same object file.  







 Appendix -- DWARF Compression and Duplicate Elimination (informative) 
 
 


 
 
December 20, 2005  Page 225 


72


E.3 Examples 


This section provides several examples in order to have a concrete basis for discussion.  


In these examples, the focus is on the arrangement of DWARF information into sections 
(specifically the .debug_info section) and the naming conventions used to achieve references 
into section groups. In practice, all of the examples that follow involve DWARF sections other 
than just .debug_info (for example, .debug_line, .debug_aranges, or others); however, only 
the .debug_info section is shown to keep the figures compact and easier to read.  


The grouping of sections into a named set is shown, but the means for achieving this in terms of 
the underlying object language is not (and varies from system to system).  


E.3.1 C++ Example 


The C++ source in Figure  is used to illustrate the DWARF representation intended to allow 
duplicate elimination. 
 
 ---- File wa.h ---- 
 struct A { 
     int i; 
 }; 
 
 ---- File wa.C ---- 
 #include "wa.h"; 
 int  
 f(A &a)  
 { 
     return a.i + 2; 
 } 


Figure 72.  Duplicate elimination example #1: C++ source 


 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 226  December 20, 2005 


73Figure  shows the section group corresponding to the included file wa.h. 


 
==== Section group name: 
        my.compiler.company.cpp.wa.h.123456 
 
== section .debug_info 
 
DW.cpp.wa.h.123456.1:   ! linker global symbol 
        DW_TAG_compile_unit 
            DW_AT_language(DW_LANG_C_plus_plus) 
            ...    ! other unit attributes 
DW.cpp.wa.h.123456.2:   ! linker global symbol 
            DW_TAG_base_type 
                DW_AT_name("int") 
DW.cpp.wa.h.123456.3:    ! linker global symbol 
            DW_TAG_structure_type 
DW.cpp.wa.h.123456.4:    ! linker global symbol 
                DW_TAG_member 
                    DW_AT_name("i") 
                    DW_AT_type(DW_FORM_refn to DW.cpp.wa.h.123456.2) 
                        ! (This is a local reference, so the more 
    ! compact form DW_FORM_refn can be used) 
 


Figure 73. Duplicate elimination example #1: DWARF section group 


 







 Appendix -- DWARF Compression and Duplicate Elimination (informative) 
 
 


 
 
December 20, 2005  Page 227 


74


 


Figure  shows the “normal” DWARF sections, which are not part of any section group, and 
how they make use of the information in the section group shown above. 
 
== section .text 
        [generated code for function f] 
 
== section .debug_info 
 
        DW_TAG_compile_unit 
.L1:     ! local (non-linker) symbol 
            DW_TAG_reference_type 
                DW_AT_type(reference to DW.cpp.wa.h.123456.3) 
            DW_TAG_subprogram 
                DW_AT_name("f") 
                DW_AT_type(reference to DW.cpp.wa.h.123456.2) 
                DW_TAG_variable 
                    DW_AT_name("a") 
                    DW_AT_type(reference to .L1) 
            ... 


 


Figure 74. Duplicate elimination example #1: primary compilation unit 


This example uses DW_TAG_compile_unit for the section group, implying that the contents of 
the compilation unit are globally visible (in accordance with C++ language rules). 
DW_TAG_partial_unit is not needed for the same reason. 


DWARF duplicate elimination for C++ requires only DWARF debugging information entries 
and attributes that are defined in DWARF Version 2, together with linker support for section 
groups. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 228  December 20, 2005 


        IMPLICIT INTEGER(A-Z) 


 


76


E.3.2 Fortran Example 


For a Fortran example, consider Figure 75. 
 
    ---- File CommonStuff.fh ---- 
 


        COMMON /Common1/ C(100) 
        PARAMETER(SEVEN = 7) 
 
 
    ---- File Func.f ---- 
 
        FUNCTION FOO (N) 
        INCLUDE 'CommonStuff.fh' 
        FOO = C(N + SEVEN) 
        RETURN 
        END 


Figure 75. Duplicate elimination example #2: Fortran source 


 


Figure  shows the section group corresponding to the included file CommonStuff.fh. 


 







 Appendix -- DWARF Compression and Duplicate Elimination (informative) 
 
 


 
 
December 20, 2005  Page 229 


==== Section group name: 
 
        my.f90.company.f90.CommonStuff.fh.654321 
 
== section .debug_info 
 
DW.myf90.CommonStuff.fh.654321.1:  ! linker global symbol 
        DW_TAG_partial_unit 
            ! ...compilation unit attributes, including... 
            DW_AT_language(DW_LANG_Fortran90) 
            DW_AT_identifier_case(DW_ID_case_insensitive) 
             
DW.myf90.CommonStuff.fh.654321.2:  ! linker global symbol 
3$:         DW_TAG_array_type 
                ! unnamed 
                DW_AT_type(reference to DW.f90.F90$main.f.2) 
                        ! base type INTEGER 
                DW_TAG_subrange_type 
                    DW_AT_type(reference to DW.f90.F90$main.f.2) 
                        ! base type INTEGER) 
                    DW_AT_lower_bound(constant 1) 
                    DW_AT_upper_bound(constant 100) 
 
DW.myf90.CommonStuff.fh.654321.3:  ! linker global symbol 
            DW_TAG_common_block 
                DW_AT_name("Common1") 
                DW_AT_location(Address of common block Common1) 
                DW_TAG_variable 
                    DW_AT_name("C") 
                    DW_AT_type(reference to 3$) 
                    DW_AT_location(address of C) 
 
DW.myf90.CommonStuff.fh.654321.4:  ! linker global symbol 
            DW_TAG_constant 
                DW_AT_name("SEVEN") 
                DW_AT_type(reference to DW.f90.F90$main.f.2) 
    ! base type INTEGER 
                DW_AT_const_value(constant 7) 


 


Figure 76. Duplicate elimination example #2: DWARF section group 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 230  December 20, 2005 


77


 


Figure  shows the sections for the primary compilation unit. 


 


== section .text 
        [code for function Foo] 
 
== section .debug_info 
 
        DW_TAG_compile_unit 
            DW_TAG_subprogram 
                DW_AT_name("Foo") 
                DW_AT_type(reference to DW.f90.F90$main.f.2) 
     ! base type INTEGER 
                DW_TAG_imported_unit 
                    DW_AT_import(reference to 
          DW.myf90.CommonStuff.fh.654321.1) 
                DW_TAG_common_inclusion ! For Common1 
                    DW_AT_common_reference(reference to 
                        DW.myf90.CommonStuff.fh.654321.3) 
 
                DW_TAG_variable ! For function result 
                    DW_AT_name("Foo”) 
                    DW_AT_type(reference to DW.f90.F90$main.f.2) 
     ! base type INTEGER 


 


Figure 77. Duplicate elimination example #2: primary unit 


 


A companion main program is shown in Figure 78. 
 
    ---- File Main.f ---- 
 
        INCLUDE 'CommonStuff.fh' 
        C(50) = 8 
        PRINT *, 'Result = ', FOO(50 - SEVEN) 
        END 


 


Figure 78. Duplicate elimination example #2: companion source 







 Appendix -- DWARF Compression and Duplicate Elimination (informative) 
 
 


 
 
December 20, 2005  Page 231 


79


E.3.3 


74


That main program results in an object file that contained a duplicate of the section group named 
my.f90.company.f90.CommonStuff.fh.654321 corresponding to the included file as well as 
the remainder of the main subprogram as shown in Figure .  


 


== section .debug_info 
 
        DW_TAG_compile_unit 
            DW_AT_name(F90$main) 
            DW_TAG_base_type 
                DW_AT_name("INTEGER") 
                DW_AT_encoding(DW_ATE_signed) 
                DW_AT_byte_size(...) 
 
            DW_TAG_base_type 
                ... 
            ...    ! other base types 
            DW_TAG_subprogram 
                DW_AT_name("F90$main") 
                DW_TAG_imported_unit 
                    DW_AT_import(reference to 
          DW.myf90.CommonStuff.fh.654321.1) 
                DW_TAG_common_inclusion  ! for Common1 
                    DW_AT_common_reference(reference to 
                        DW.myf90.CommonStuff.fh.654321.3) 
                ... 
 


Figure 79. Duplicate elimination example #2: companion DWARF 


This example uses DW_TAG_partial_unit for the section group because the included 
declarations are not independently visible as global entities. 


C Example 


The C++ example in Section E.3.1 might appear to be equally valid as a C example. However, it 
is prudent to include a DW_TAG_imported_unit in the primary unit (see Figure ) with an 
DW_AT_import attribute that refers to the proper unit in the section group.  


 The C rules for consistency of global (file scope) symbols across compilations are less strict 
than for C++; inclusion of the import unit attribute assures that the declarations of the proper 
section group are considered before declarations from other compilations.  







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 232  December 20, 2005 


E.4 Summary of Compression Techniques 


E.4.1 #include compression 


C++ has a much greater problem than C with the number and size of the headers included and 
the amount of data in each, but even with C there is substantial header file information 
duplication.  


A reasonable approach is to put each header file in its own section group, using the naming rules 
mentioned above. The section groups are marked to ensure duplicate removal. 


All data instances and code instances (even if they came from the header files above) are put into 
non-section group sections such as the base object file .debug_info section.  


E.4.2 Eliminating function duplication 


Function templates (C++) result in code for the same template instantiation being compiled into 
multiple archives or relocatable objects. The linker wants to keep only one of a given entity. The 
DWARF description, and everything else for this function, should be reduced to just a single 
copy.  


For each such code group (function template in this example) the compiler assigns a name for the 
group which will match all other instantiations of this function but match nothing else. The 
section groups are marked to ensure duplicate removal, so that the second and subsequent 
definitions seen by the static linker are simply discarded.  


References to other .debug_info sections follow the approach suggested above, but the naming 
rule might be slightly different in that the <file-designator> should be interpreted as a <function-
designator>.  


E.4.3 Single-function-per-DWARF-compilation-unit 


Section groups can help make it easy for a linker to completely remove unused functions.  


Such section groups are not marked for duplicate removal, since the functions are not duplicates 
of anything. 


Each function is given a compilation unit and a section group. Each such compilation unit is 
complete, with its own text, data, and DWARF sections.  


There will also be a compilation unit that has the file-level declarations and definitions. Other 
per-function compilation unit DWARF information (.debug_info) points to this common file-
level compilation unit using DW_TAG_imported_unit.  







 Appendix -- DWARF Compression and Duplicate Elimination (informative) 
 
 


 
 
December 20, 2005  Page 233 


Section groups can use DW_FORM_ref_addr and internal labels (section-relative relocations) to 
refer to the main object file sections, as the section groups here are either deleted as unused or 
kept. There is no possibility (aside from error) of a group from some other compilation being 
used in place of one of these groups.  


E.4.4 Inlining and out-of-line-instances 


Abstract instances and concrete-out-of-line instances may be put in distinct compilation units 
using section groups. This makes possible some useful duplicate DWARF elimination.  


No special provision for eliminating class duplication resulting from template instantiation is 
made here, though nothing prevents eliminating such duplicates using section groups.  


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 234  December 20, 2005 


 







DWARF Debugging Information Format, Version 3 
 
 


Appendix F – Version Numbers (informative) 
Most DWARF sections have a version number in the section header. This version number is not 
tied to the DWARF standard revision numbers, but instead is incremented when incompatible 
changes to that section are made. The DWARF standard that a producer is following is not 
explicitly encoded in the file. Version numbers in the section headers are represented as two byte 
unsigned integers. Figure  shows what version numbers are in use for each section. 80


There are sections with no version number encoded in them; they are only accessed via the 
.debug_info section and so an incompatible change in those sections' format would be 
represented by a change in the .debug_info section version number. 
 


Section version number 
in DWARF Version 3 


(this document) 


Section Name Section version number
in DWARF Version 2 


(July 1993) 
.debug_abbrev - - 
.debug_aranges 2 2 
.debug_frame 1 3 
.debug_info 2 3 
.debug_line 2 3 
.debug_loc - - 
.debug_macinfo - - 
.debug_pubnames 2 2 
.debug_pubtypes x 2 


x 
- 


.debug_ranges - 


.debug_str - 
 


Notes: 


• "-" means that a version number is not applicable (the section's header does not include a 
version) 


• "x" means that the section was not defined in that version of the DWARF standard. 


Higher numbers are reserved for future use. 


 


Figure 80. Section version numbers 


For .debug_frame, section version 2 is unused. 


 
 
Page 235  December 20, 2005 







 DWARF Debugging Information Format, Version 3 
 
 
 


 
 
Page 236  December 20, 2005 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 237  December 20, 2005 


 


 


GNU Free Documentation License 
Version 1.2, November 2002 


Copyright (C) 2000,2001,2002  Free Software Foundation, Inc. 


59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 


 


Everyone is permitted to copy and distribute verbatim copies of this license 
document, but changing it is not allowed. 


 


0. PREAMBLE 


The purpose of this License is to make a manual, textbook, or other 
functional and useful document "free" in the sense of freedom: to assure 
everyone the effective freedom to copy and redistribute it, with or without 
modifying it, either commercially or noncommercially. 


Secondarily, this License preserves for the author and publisher a way to get 
credit for their work, while not being considered responsible for 
modifications made by others. 


This License is a kind of "copyleft", which means that derivative works of 
the document must themselves be free in the same sense.  It complements the 
GNU General Public License, which is a copyleft license designed for free 
software. 


We have designed this License in order to use it for manuals for free 
software, because free software needs free documentation: a free program 
should come with manuals providing the same freedoms that the software does.  
But this License is not limited to software manuals; it can be used for any 
textual work, regardless of subject matter or whether it is published as a 
printed book.  We recommend this License principally for works whose purpose 
is instruction or reference. 


 


1. APPLICABILITY AND DEFINITIONS 


This License applies to any manual or other work, in any medium, that 
contains a notice placed by the copyright holder saying it can be distributed 
under the terms of this License.  Such a notice grants a world-wide, royalty-







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 238  December 20, 2005 


free license, unlimited in duration, to use that work under the conditions 
stated herein.  The "Document", below, refers to any such manual or work.  
Any member of the public is a licensee, and is addressed as "you".  You 
accept the license if you copy, modify or distribute the work in a way 
requiring permission under copyright law. 


A "Modified Version" of the Document means any work containing the Document 
or a portion of it, either copied verbatim, or with modifications and/or 
translated into another language. 


A "Secondary Section" is a named appendix or a front-matter section of the 
Document that deals exclusively with the relationship of the publishers or 
authors of the Document to the Document's overall subject (or to related 
matters) and contains nothing that could fall directly within that overall 
subject.  (Thus, if the Document is in part a textbook of mathematics, a 
Secondary Section may not explain any mathematics.)  The relationship could 
be a matter of historical connection with the subject or with related 
matters, or of legal, commercial, philosophical, ethical or political 
position regarding them. 


The "Invariant Sections" are certain Secondary Sections whose titles are 
designated, as being those of Invariant Sections, in the notice that says 
that the Document is released under this License.  If a section does not fit 
the above definition of Secondary then it is not allowed to be designated as 
Invariant.  The Document may contain zero Invariant Sections.  If the 
Document does not identify any Invariant Sections then there are none. 


The "Cover Texts" are certain short passages of text that are listed, as 
Front-Cover Texts or Back-Cover Texts, in the notice that says that the 
Document is released under this License.  A Front-Cover Text may be at most 5 
words, and a Back-Cover Text may be at most 25 words. 


A "Transparent" copy of the Document means a machine-readable copy, 
represented in a format whose specification is available to the general 
public, that is suitable for revising the document straightforwardly with 
generic text editors or (for images composed of pixels) generic paint 
programs or (for drawings) some widely available drawing editor, and that is 
suitable for input to text formatters or for automatic translation to a 
variety of formats suitable for input to text formatters.  A copy made in an 
otherwise Transparent file format whose markup, or absence of markup, has 
been arranged to thwart or discourage subsequent modification by readers is 
not Transparent. 


An image format is not Transparent if used for any substantial amount of 
text.  A copy that is not "Transparent" is called "Opaque". 


Examples of suitable formats for Transparent copies include plain ASCII 
without markup, Texinfo input format, LaTeX input format, SGML or XML using a 
publicly available DTD, and standard-conforming simple HTML, PostScript or 
PDF designed for human modification.  Examples of transparent image formats 







 GNU Free Documentation License 
 
 


 
 
December 20, 2005  Page 239 


include PNG, XCF and JPG.  Opaque formats include proprietary formats that 
can be read and edited only by proprietary word processors, SGML or XML for 
which the DTD and/or processing tools are not generally available, and the 
machine-generated HTML, PostScript or PDF produced by some word processors 
for output purposes only. 


The "Title Page" means, for a printed book, the title page itself, plus such 
following pages as are needed to hold, legibly, the material this License 
requires to appear in the title page.  For works in formats which do not have 
any title page as such, "Title Page" means the text near the most prominent 
appearance of the work's title, preceding the beginning of the body of the 
text. 


A section "Entitled XYZ" means a named subunit of the Document whose title 
either is precisely XYZ or contains XYZ in parentheses following text that 
translates XYZ in another language.  (Here XYZ stands for a specific section 
name mentioned below, such as "Acknowledgements", "Dedications", 
"Endorsements", or "History".)  To "Preserve the Title" of such a section 
when you modify the Document means that it remains a section "Entitled XYZ" 
according to this definition. 


The Document may include Warranty Disclaimers next to the notice which states 
that this License applies to the Document.  These Warranty Disclaimers are 
considered to be included by reference in this License, but only as regards 
disclaiming warranties: any other implication that these Warranty Disclaimers 
may have is void and has no effect on the meaning of this License. 


 


2. VERBATIM COPYING 


You may copy and distribute the Document in any medium, either commercially 
or noncommercially, provided that this License, the copyright notices, and 
the license notice saying this License applies to the Document are reproduced 
in all copies, and that you add no other conditions whatsoever to those of 
this License.  You may not use technical measures to obstruct or control the 
reading or further copying of the copies you make or distribute.  However, 
you may accept compensation in exchange for copies.  If you distribute a 
large enough number of copies you must also follow the conditions in 
section 3. 


You may also lend copies, under the same conditions stated above, and you may 
publicly display copies. 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 240  December 20, 2005 


3. COPYING IN QUANTITY 


If you publish printed copies (or copies in media that commonly have printed 
covers) of the Document, numbering more than 100, and the Document's license 
notice requires Cover Texts, you must enclose the copies in covers that 
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the 
front cover, and Back-Cover Texts on the back cover.  Both covers must also 
clearly and legibly identify you as the publisher of these copies.  The front 
cover must present the full title with all words of the title equally 
prominent and visible.  You may add other material on the covers in addition. 


Copying with changes limited to the covers, as long as they preserve the 
title of the Document and satisfy these conditions, can be treated as 
verbatim copying in other respects. 


If the required texts for either cover are too voluminous to fit legibly, you 
should put the first ones listed (as many as fit reasonably) on the actual 
cover, and continue the rest onto adjacent pages. 


If you publish or distribute Opaque copies of the Document numbering more 
than 100, you must either include a machine-readable Transparent copy along 
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to 
download using public-standard network protocols a complete Transparent copy 
of the Document, free of added material. 


If you use the latter option, you must take reasonably prudent steps, when 
you begin distribution of Opaque copies in quantity, to ensure that this 
Transparent copy will remain thus accessible at the stated location until at 
least one year after the last time you distribute an Opaque copy (directly or 
through your agents or retailers) of that edition to the public. 


It is requested, but not required, that you contact the authors of the 
Document well before redistributing any large number of copies, to give them 
a chance to provide you with an updated version of the Document. 


 


4. MODIFICATIONS 


You may copy and distribute a Modified Version of the Document under the 
conditions of sections 2 and 3 above, provided that you release the Modified 
Version under precisely this License, with the Modified Version filling the 
role of the Document, thus licensing distribution and modification of the 
Modified Version to whoever possesses a copy of it.  In addition, you must do 
these things in the Modified Version: 


A. Use in the Title Page (and on the covers, if any) a title distinct from 
that of the Document, and from those of previous versions (which should, 
if there were any, be listed in the History section of the Document).  You 







 GNU Free Documentation License 
 
 


 
 
December 20, 2005  Page 241 


may use the same title as a previous version if the original publisher of 
that version gives permission. 


B. List on the Title Page, as authors, one or more persons or entities 
responsible for authorship of the modifications in the Modified Version, 
together with at least five of the principal authors of the Document (all 
of its principal authors, if it has fewer than five), unless they release 
you from this requirement. 


C. State on the Title page the name of the publisher of the Modified Version, 
as the publisher. 


D. Preserve all the copyright notices of the Document. 


E. Add an appropriate copyright notice for your modifications adjacent to the 
other copyright notices. 


F. Include, immediately after the copyright notices, a license notice giving 
the public permission to use the Modified Version under the terms of this 
License, in the form shown in the Addendum below. 


G. Preserve in that license notice the full lists of Invariant Sections and 
required Cover Texts given in the Document's license notice. 


H. Include an unaltered copy of this License. 


I. Preserve the section Entitled "History", Preserve its Title, and add to it 
an item stating at least the title, year, new authors, and publisher of 
the Modified Version as given on the Title Page.  If there is no section 
Entitled "History" in the Document, create one stating the title, year, 
authors, and publisher of the Document as given on its Title Page, then 
add an item describing the Modified Version as stated in the previous 
sentence. 


J. Preserve the network location, if any, given in the Document for public 
access to a Transparent copy of the Document, and likewise the network 
locations given in the Document for previous versions it was based on.  
These may be placed in the "History" section. 
 
You may omit a network location for a work that was published at least 
four years before the Document itself, or if the original publisher of the 
version it refers to gives permission. 


K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the 
Title of the section, and preserve in the section all the substance and 
tone of each of the contributor acknowledgements and/or dedications given 
therein. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 242  December 20, 2005 


L. Preserve all the Invariant Sections of the Document, unaltered in their 
text and in their titles.  Section numbers or the equivalent are not 
considered part of the section titles. 


M. Delete any section Entitled "Endorsements".  Such a section may not be 
included in the Modified Version. 


N. Do not retitle any existing section to be Entitled "Endorsements" or to 
conflict in title with any Invariant Section. 


O. Preserve any Warranty Disclaimers. 


If the Modified Version includes new front-matter sections or appendices that 
qualify as Secondary Sections and contain no material copied from the 
Document, you may at your option designate some or all of these sections as 
invariant.  To do this, add their titles to the list of Invariant Sections in 
the Modified Version's license notice. 


These titles must be distinct from any other section titles. 


You may add a section Entitled "Endorsements", provided it contains nothing 
but endorsements of your Modified Version by various parties--for example, 
statements of peer review or that the text has been approved by an 
organization as the authoritative definition of a standard. 


You may add a passage of up to five words as a Front-Cover Text, and a 
passage of up to 25 words as a Back-Cover Text, to the end of the list of 
Cover Texts in the Modified Version.  Only one passage of Front-Cover Text 
and one of Back-Cover Text may be added by (or through arrangements made by) 
any one entity.  If the Document already includes a cover text for the same 
cover, previously added by you or by arrangement made by the same entity you 
are acting on behalf of, you may not add another; but you may replace the old 
one, on explicit permission from the previous publisher that added the old 
one. 


The author(s) and publisher(s) of the Document do not by this License give 
permission to use their names for publicity for or to assert or imply 
endorsement of any Modified Version. 


 


5. COMBINING DOCUMENTS 


You may combine the Document with other documents released under this 
License, under the terms defined in section 4 above for modified versions, 
provided that you include in the combination all of the Invariant Sections of 
all of the original documents, unmodified, and list them all as Invariant 
Sections of your combined work in its license notice, and that you preserve 
all their Warranty Disclaimers. 







 GNU Free Documentation License 
 
 


 
 
December 20, 2005  Page 243 


The combined work need only contain one copy of this License, and multiple 
identical Invariant Sections may be replaced with a single copy.  If there 
are multiple Invariant Sections with the same name but different contents, 
make the title of each such section unique by adding at the end of it, in 
parentheses, the name of the original author or publisher of that section if 
known, or else a unique number. 


Make the same adjustment to the section titles in the list of Invariant 
Sections in the license notice of the combined work. 


In the combination, you must combine any sections Entitled "History" in the 
various original documents, forming one section Entitled "History"; likewise 
combine any sections Entitled "Acknowledgements", and any sections Entitled 
"Dedications".  You must delete all sections Entitled "Endorsements". 


 


6. COLLECTIONS OF DOCUMENTS 


You may make a collection consisting of the Document and other documents 
released under this License, and replace the individual copies of this 
License in the various documents with a single copy that is included in the 
collection, provided that you follow the rules of this License for verbatim 
copying of each of the documents in all other respects. 


You may extract a single document from such a collection, and distribute it 
individually under this License, provided you insert a copy of this License 
into the extracted document, and follow this License in all other respects 
regarding verbatim copying of that document. 


 


7. AGGREGATION WITH INDEPENDENT WORKS 


A compilation of the Document or its derivatives with other separate and 
independent documents or works, in or on a volume of a storage or 
distribution medium, is called an "aggregate" if the copyright resulting from 
the compilation is not used to limit the legal rights of the compilation's 
users beyond what the individual works permit. 


When the Document is included in an aggregate, this License does not apply to 
the other works in the aggregate which are not themselves derivative works of 
the Document. 


If the Cover Text requirement of section 3 is applicable to these copies of 
the Document, then if the Document is less than one half of the entire 
aggregate, the Document's Cover Texts may be placed on covers that bracket 
the Document within the aggregate, or the electronic equivalent of covers if 
the Document is in electronic form. 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 244  December 20, 2005 


Otherwise they must appear on printed covers that bracket the whole 
aggregate. 


 


8. TRANSLATION 


Translation is considered a kind of modification, so you may distribute 
translations of the Document under the terms of section 4. Replacing 
Invariant Sections with translations requires special permission from their 
copyright holders, but you may include translations of some or all Invariant 
Sections in addition to the original versions of these Invariant Sections.  
You may include a translation of this License, and all the license notices in 
the Document, and any Warranty Disclaimers, provided that you also include 
the original English version of this License and the original versions of 
those notices and disclaimers.  In case of a disagreement between the 
translation and the original version of this License or a notice or 
disclaimer, the original version will prevail. 


If a section in the Document is Entitled "Acknowledgements", "Dedications", 
or "History", the requirement (section 4) to Preserve its Title (section 1) 
will typically require changing the actual title. 


 


9. TERMINATION 


You may not copy, modify, sublicense, or distribute the Document except as 
expressly provided for under this License.  Any other attempt to copy, 
modify, sublicense or distribute the Document is void, and will automatically 
terminate your rights under this License.  However, parties who have received 
copies, or rights, from you under this License will not have their licenses 
terminated so long as such parties remain in full compliance. 


 


10. FUTURE REVISIONS OF THIS LICENSE 


The Free Software Foundation may publish new, revised versions of the GNU 
Free Documentation License from time to time.  Such new versions will be 
similar in spirit to the present version, but may differ in detail to address 
new problems or concerns.  See http://www.gnu.org/copyleft/. 


Each version of the License is given a distinguishing version number. 


If the Document specifies that a particular numbered version of this License 
"or any later version" applies to it, you have the option of following the 
terms and conditions either of that specified version or of any later version 
that has been published (not as a draft) by the Free Software Foundation.  If 
the Document does not specify a version number of this License, you may 







 GNU Free Documentation License 
 
 


 
 
December 20, 2005  Page 245 


choose any version ever published (not as a draft) by the Free Software 
Foundation. 


 


ADDENDUM: How to use this License for your documents 


To use this License in a document you have written, include a copy of the 
License in the document and put the following copyright and license notices 
just after the title page: 


Copyright (c)  YEAR  YOUR NAME. 


Permission is granted to copy, distribute and/or modify this document 
under the terms of the GNU Free Documentation License, Version 1.2 or 
any later version published by the Free Software Foundation; with no 
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. 


A copy of the license is included in the section entitled "GNU Free 
Documentation License". 


If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, 
replace the "with...Texts." line with this: 


with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST. 


If you have Invariant Sections without Cover Texts, or some other combination 
of the three, merge those two alternatives to suit the situation. 


If your document contains nontrivial examples of program code, we recommend 
releasing these examples in parallel under your choice of free software 
license, such as the GNU General Public License, to permit their use in free 
software. 


 


 


 


 


 


 


 


 


 







 DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 246  December 20, 2005 


 







DWARF Debugging Information Format, Version 3 
 
 


 
 
Page 247  December 20, 2005 


 


 


Index 
 


... parameters.....................See unspecified parameters entry 


.data ................................................................................219 


.debug_abbrev................. 121, 123, 124, 160, 183, 219, 235 
example ..................................................................187 


.debug_aranges ......... 91, 120, 121, 154, 160, 183, 219, 235 


.debug_frame .......................... 109, 111, 120, 121, 160, 235 
example ..................................................................206 


.debug_info .5, 89, 90, 91, 92, 120, 121, 122, 123, 124, 125, 
128, 154, 160, 183, 219, 221, 223, 224, 225, 227, 229, 
230, 231, 232, 235 
example ..................................................................187 


.debug_line ......... 39, 92, 120, 121, 127, 160, 183, 219, 235 


.debug_loc......................................... 26, 127, 160, 183, 235 


.debug_macinfo ................ 39, 104, 106, 128, 160, 183, 235 


.debug_pubnames ..... 90, 120, 121, 122, 153, 160, 183, 235 


.debug_pubtypes ....... 90, 120, 121, 122, 153, 160, 183, 235 


.debug_ranges ................................... 33, 128, 160, 183, 235 


.debug_str ....................................... 122, 129, 160, 183, 235 


.text .................................................................219, 227, 230 
32-bit DWARF format....................................................120 
64-bit DWARF format....................................................121 
abbreviations table ..................................................123, 124 


dynamic forms in.......................................................125 
example .....................................................................187 


abstract instance..............................................................233 
example .....................................................210, 213, 216 
nested...........................................................................55 


abstract instance entry.......................................................51 
abstract instance root ........................................................51 
abstract instance tree...................................................51, 52 
abstract origin attribute ...............................................53, 54 
accelerated access .............................................................89 


by address....................................................................91 
by name .......................................................................90 


access declaration entry ....................................................74 
accessibility attribute ......................................28, 73, 74, 77 


encoding ....................................................................148 
activation, call frame.......................................................107 
Ada ............7, 28, 35, 38, 66, 67, 68, 87, 190, 195, 196, 197 
address 


dereference operator ....................................................17 
implicit push for member pointer ................................85 
implicit push of base..............................................18, 25 
size of an....................................... See size of an address 


address class .............................................................12, 126 


address class attribute........................................... 30, 48, 67 
encoding.................................................................... 151 


address range 
in location list.............................................................. 27 
in range list.................................................................. 34 


address register 
in call frame information........................................... 109 
in line number machine............................................... 93 


address size ........................................See size of an address 
address space 


flat30 
multiple ....................................................................... 17 
segmented ............................................. 29, 91, 123, 155 


address, uplevel ................................ See static link attribute 
alias declaration....................See imported declaration entry 
allocated attribute ............................................................. 86 
anonymous object containing bitfield............................... 75 
anonymous union ....................................................... 59, 74 
ARM instruction set architecture...................................... 92 
array 


declaration of type....................................................... 69 
descriptor for............................................................. 189 
element ordering ......................................................... 69 
element type................................................................ 70 


array type entry ................................................................ 69 
examples ................................................................... 189 


artificial attribute.............................................................. 29 
associated attribute ........................................................... 86 
attribute duplication............................................................ 5 
attribute encodings ......................................................... 125 
attribute ordering................................................................ 5 
attribute value classes......................................................... 5 
attributes............................................................................. 5 


list of ............................................................................. 6 
base address selection entry 


in location list................................................ 26, 27, 146 
in range list.................................................... 33, 34, 159 


base type entry.................................................................. 63 
base types attribute ........................................................... 41 
big endian byte order 


effect of....................................................................... 76 
big-endian encoding ..........................See endianity attribute 
binary scale attribute ........................................................ 66 
bit offset attribute ....................................................... 63, 75 
bit size attribute .......................................................... 63, 75 







 DWARF Debugging Information Format, Version 3 
 
 
bit stride attribute..................................................70, 81, 84 containing type attribute................................................... 85 
block class.................................................................12, 126 contiguous address range.................................................. 33 
block entry ........ See try block entry, See lexical block entry count attribute ............................................................ 67, 84 
builtin type............................................. See base type entry default ......................................................................... 84 
byte size attribute.................... 63, 70, 71, 75, 81, 82, 83, 86 D 38 
byte stride attribute ...........................................................81 data location attribute ....................................................... 86 


data member.................................. See member entry (data) C 1, 3, 31, 38, 47, 57, 59, 61, 64, 67, 68, 69, 70, 71, 72, 
81, 82, 84, 104, 189, 190, 231, 232 data member location attribute ................................... 73, 74 


C++...1, 3, 28, 29, 32, 38, 42, 43, 44, 45, 49, 50, 54, 56, 57, 
58, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 81, 84, 
89, 90, 104, 216, 219, 222, 225, 227, 231, 232 


debugging information entry .............................................. 5 
global name for ......................................................... 222 
ownership relation....................................................... 13 


call column attribute .........................................................52 decimal scale attribute................................................ 65, 66 
call file attribute................................................................52 decimal sign attribute ....................................................... 65 
call frame information declaration attribute........................................ 31, 42, 59, 71 


encoding ....................................................................157 declaration column attribute............................................. 32 
examples....................................................................205 declaration coordinates..................................................... 31 


call line attribute ...............................................................52 in concrete instance..................................................... 53 
calling convention attribute...............................................46 declaration file attribute ................................................... 31 


encoding ....................................................................152 declaration line attribute................................................... 31 
case sensitivity ..................................................................40 default value attribute....................................................... 60 


derived type (C++) .............................. See inheritance entry catch block entry...............................................................58 
CIE.......................................See common information entry description attribute.......................................................... 35 
class template instantiation (entry) ...................................78 descriptor, array.............................................................. 189 
class type entry .................................................................71 digit count attribute ......................................................... 65,  


discontiguous address ranges ... See non-contiguous address 
ranges 


as class template instantiation......................................78 
classes of attribute value ...... 5, See also attribute encodings 
COBOL.............................................................................65 discriminant (entry) .......................................................... 79 
column position of declaration..........................................32 discriminant attribute........................................................ 79 
COMDAT.................................................See section group discriminant list attribute.................................................. 79 


encoding.................................................................... 153 common (block) reference attribute ..................................48 
common block ..........................See Fortran, common block discriminant value attribute .............................................. 79 


duplicate elimination ..... See DWARF duplicate elimination common block entry .........................................................62 
common information entry .............................................110 DW_ACCESS_private ............................................. 28, 148 
compilation directory attribute..........................................40 DW_ACCESS_protected ......................................... 28, 148 
compilation unit ................................................................37 DW_ACCESS_public .............................................. 28, 148 


DW_ADDR_far16 ............................................................ 30 for template instantiation .............................................78 
DW_ADDR_far32 ............................................................ 30 header ........................................................................123 
DW_ADDR_huge16 ......................................................... 30 normal .........................................................................37 
DW_ADDR_near16.......................................................... 30 partial...........................................................................37 


compression ................................ See DWARF compression DW_ADDR_near32.......................................................... 30 
concrete inline instance DW_ADDR_none .................................................... 30, 151 


example .....................................................210, 213, 216 DW_AT_abstract_origin 7, 53, 54, 135, 163, 164, 167, 168, 
169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 
212, 215, 218 


nested...........................................................................55 
concrete inlined instance root ...........................................52 
concrete inlined instance tree............................................52 DW_AT_accessibility 7, 28, 73, 74, 77, 135, 148, 163, 164, 


166, 167, 168, 169, 170, 171, 173, 174, 175, 176, 177, 
178, 179 


concrete out-of-line instance.....................................54, 233 
example .....................................................................213 
of inlined subprogram..................................................54 DW_AT_address_class ....7, 30, 48, 67, 135, 166, 172, 173, 


175, 176, 179 condition entry ..................................................................80 
condition, COBOL level-88..............................................80 DW_AT_allocated .....7, 35, 70, 86, 87, 136, 163, 164, 165, 


167, 171, 172, 173, 174, 176, 177, 178, 179, 192 constant class ............................................................12, 126 
constant entry....................................................................59 DW_AT_artificial .....7, 29, 56, 77, 135, 168, 175, 178, 202 
constant type entry ............................................................68 DW_AT_associated ...7, 35, 70, 86, 87, 136, 163, 164, 165, 


167, 171, 172, 173, 174, 176, 177, 178, 179, 191 constant value attribute .........................................61, 78, 81 


 
 
Page 248  December 20, 2005 







 Index 
 
 
DW_AT_base_types............................. 7, 41, 135, 165, 172 DW_AT_import ......9, 43, 44, 134, 168, 200, 224, 230, 231 
DW_AT_binary_scale ..................................7, 66, 137, 164 DW_AT_inline 9, 50, 51, 134, 152, 175, 211, 213, 214, 217 
DW_AT_bit_offset ................... 7, 35, 63, 75, 133, 164, 170 DW_AT_is_optional .................................... 9, 60, 134, 168 
DW_AT_bit_size...................... 7, 35, 63, 75, 133, 164, 170 DW_AT_language ..9, 38, 69, 134, 165, 172, 188, 226, 229 
DW_AT_bit_stride ..... 7, 35, 70, 81, 84, 135, 163, 167, 176 DW_AT_lo_user ............................................................ 138 
DW_AT_byte_size ...... 7, 35, 63, 70, 71, 75, 81, 82, 83, 86, 


133, 163, 164, 167, 170, 173, 174, 176, 188, 192, 231 
DW_AT_location..... 9, 21, 32, 51, 58, 59, 62, 87, 133, 165, 


166, 168, 178, 179, 193, 197, 199, 200, 202, 212, 215, 
217, 218, 229 DW_AT_byte_stride......... 7, 35, 81, 84, 136, 167, 176, 194 


DW_AT_call_column...................................7, 52, 137, 169 DW_AT_low_pc .... 9, 29, 32, 33, 34, 38, 42, 47, 51, 52, 57, 
58, 134, 164, 165, 166, 169, 170, 171, 172, 175, 177, 
179, 188, 199, 200, 212, 215, 217, 218 


DW_AT_call_file .........................................7, 52, 137, 169 
DW_AT_call_line.........................................7, 52, 137, 169 
DW_AT_calling_convention................ 7, 46, 135, 152, 175 DW_AT_lower_bound...9, 35, 84, 134, 176, 191, 192, 196, 


197, 229 DW_AT_common_reference........ 8, 48, 134, 165, 230, 231 
DW_AT_comp_dir ....................... 8, 40, 134, 165, 172, 188 DW_AT_macro_info ..........................10, 39, 136, 165, 172 
DW_AT_const_value ...... 8, 61, 78, 81, 134, 166, 167, 177, 


178, 212, 229 
DW_AT_mutable ....................................... 10, 74, 137, 170 
DW_AT_name10, 32, 35, 38, 40, 42, 43, 45, 50, 54, 57, 59, 


62, 63, 67, 69, 71, 72, 74, 78, 80, 81, 82, 83, 85, 86, 90, 
133, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 
173, 174, 175, 176, 177, 178, 179, 188, 192, 193, 196, 
197, 199, 200, 201, 202, 211, 214, 217, 226, 227, 229, 
230, 231 


DW_AT_containing_type.............................8, 85, 134, 172 
DW_AT_count ......................... 8, 35, 67, 84, 135, 173, 176 
DW_AT_data_location.. 8, 70, 86, 136, 163, 164, 165, 167, 


171, 172, 173, 174, 176, 177, 178, 179, 190, 191, 192, 
193, 194, 196 


DW_AT_data_member_location ..... 8, 18, 73, 74, 135, 169, 
170, 192, 197 


DW_AT_namelist_item ............................. 10, 62, 136, 171 
DW_AT_object_pointer......................10, 77, 137, 175, 202 


DW_AT_decimal_scale..................................8, 65, 66, 164 DW_AT_ordering ...............................10, 69, 133, 153, 163 
DW_AT_decimal_sign .................................8, 65, 137, 164 DW_AT_picture_string.............................. 10, 65, 137, 164 
DW_AT_decl_column............................ 8, 31, 32, 135, 163 DW_AT_priority........................................ 10, 42, 136, 171 
DW_AT_decl_file ........................................8, 31, 135, 163 DW_AT_producer.......................10, 40, 134, 165, 172, 188 
DW_AT_decl_line........................................8, 31, 135, 163 DW_AT_prototyped......................10, 47, 82, 134, 175, 176 
DW_AT_declaration.... 8, 31, 42, 59, 71, 72, 135, 163, 164, 


165, 166, 167, 170, 171, 172, 173, 174, 175, 176, 177, 
178, 179 


DW_AT_pure............................................. 10, 47, 137, 175 
DW_AT_ranges ... 10, 29, 32, 33, 38, 42, 47, 51, 52, 57, 58, 


136, 164, 165, 169, 170, 171, 172, 175, 177, 179 
DW_AT_default_value.................................8, 60, 134, 168 DW_AT_recursive ..................................... 10, 47, 138, 175 
DW_AT_description.... 8, 35, 137, 163, 164, 165, 166, 167, 


168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178 
DW_AT_return_addr ............10, 48, 51, 134, 166, 169, 175 
DW_AT_segment .... 10, 29, 48, 51, 60, 136, 164, 165, 166, 


168, 169, 170, 171, 172, 175, 177, 178, 179 DW_AT_digit_count ....................................8, 65, 137, 164 
DW_AT_discr ........................ 8, 79, 80, 134, 135, 153, 179 DW_AT_sibling. 10, 13, 133, 163, 164, 165, 166, 167, 168, 


169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179 DW_AT_discr_list.......................... 8, 79, 80, 135, 153, 179 
DW_AT_discr_value .............................. 8, 79, 80, 134, 179 DW_AT_small ................................................. 66, 137, 164 
DW_AT_elemental.......................................8, 46, 137, 175 DW_AT_specification10, 43, 60, 72, 77, 78, 136, 164, 174, 


175, 178, 200 DW_AT_encoding................ 9, 63, 135, 146, 164, 188, 231 
DW_AT_endianity ......... 9, 61, 63, 137, 164, 166, 168, 178 DW_AT_start_scope......10, 51, 61, 63, 135, 163, 164, 166, 


167, 168, 169, 171, 173, 174, 175, 176, 177, 178 DW_AT_entry_pc ... 9, 29, 33, 34, 42, 47, 51, 52, 136, 169, 
171, 175 DW_AT_static_link ....10, 49, 136, 166, 175, 212, 215, 217 


DW_AT_explicit ..........................................9, 77, 137, 175 DW_AT_stmt_list .......................11, 39, 134, 165, 172, 188 
DW_AT_stride......................See DW_AT_byte_stride, See 


DW_AT_byte_stride 
DW_AT_extension ............................... 9, 42, 136, 171, 200 
DW_AT_external ................... 9, 46, 59, 135, 166, 175, 178 


DW_AT_stride_size........................See DW_AT_bit_stride DW_AT_frame_base . 9, 16, 25, 48, 49, 135, 166, 175, 215, 
217, 218 DW_AT_string_length............................... 11, 82, 134, 174 


DW_AT_friend..................................... 9, 74, 135, 168, 178 DW_AT_threads_scaled ............................ 11, 83, 137, 176 
DW_AT_hi_user.............................................................138 DW_AT_trampoline............................11, 56, 137, 169, 175 
DW_AT_high_pc .. 9, 29, 32, 33, 38, 42, 47, 51, 52, 57, 58, 


134, 164, 165, 169, 170, 171, 172, 175, 177, 179, 188, 
199, 200, 212, 215, 217, 218 


DW_AT_type. 11, 27, 47, 50, 58, 60, 67, 69, 70, 73, 74, 78, 
79, 80, 81, 82, 83, 85, 86, 136, 163, 165, 166, 167, 168, 
169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 188, 


DW_AT_identifier_case ....... 9, 40, 136, 151, 165, 172, 229 


 
 
Page 249  December 20, 2005 







 DWARF Debugging Information Format, Version 3 
 
 


191, 192, 193, 196, 197, 199, 200, 201, 202, 211, 214, 
217, 226, 227, 229, 230 


DW_CFA_restore_state ......................................... 117, 158 
DW_CFA_same_value................................... 114, 158, 207 


DW_AT_upper_bound 11, 35, 84, 135, 176, 191, 192, 196, 
197, 229 


DW_CFA_set_loc .......................................... 112, 117, 158 
DW_CFA_undefined ..............................114, 118, 158, 207 


DW_AT_use_location ................................ 11, 85, 136, 172 DW_CFA_val_expression...................................... 116, 159 
DW_AT_use_UTF8 ................... 11, 41, 129, 136, 165, 172 DW_CFA_val_offset ............................................. 115, 159 
DW_AT_variable_parameter...................... 11, 60, 136, 168 DW_CFA_val_offset_sf................................................. 115 
DW_AT_virtuality.......... 11, 29, 73, 77, 136, 149, 169, 175 DW_CHILDREN_no ..................................... 124, 133, 188 
DW_AT_visibility ..... 11, 28, 134, 149, 163, 164, 165, 166, 


167, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179 
DW_CHILDREN_yes.................................... 124, 133, 188 
DW_DS_leading_overpunch.................................... 66, 147 


DW_AT_vtable_elem_location .................. 11, 77, 136, 175 DW_DS_leading_separate ....................................... 66, 147 
DW_ATE_address ....................................................64, 146 DW_DS_trailing_overpunch.................................... 66, 147 
DW_ATE_boolean ...................................................64, 146 DW_DS_trailing_separate........................................ 66, 147 
DW_ATE_complex_float .........................................64, 146 DW_DS_unsigned.................................................... 66, 147 
DW_ATE_decimal_float ..........................................64, 147 DW_DSC_label........................................................ 79, 153 
DW_ATE_edited ................................................64, 65, 146 DW_DSC_range ...................................................... 79, 153 
DW_ATE_float.........................................................64, 146 DW_END_big.......................................................... 62, 148 
DW_ATE_hi_user ..........................................................147 DW_END_default.................................................... 62, 148 
DW_ATE_imaginary_float.......................................64, 146 DW_END_hi_user ......................................................... 148 
DW_ATE_lo_user ..........................................................147 DW_END_little........................................................ 62, 148 
DW_ATE_numeric_string............................64, 65, 66, 146 DW_END_lo_user ......................................................... 148 
DW_ATE_packed_decimal ..........................64, 65, 66, 146 DW_FORM_addr............................126, 138, 146, 159, 188 
DW_ATE_signed .............................................64, 146, 231 DW_FORM_block..................................114, 116, 126, 138 
DW_ATE_signed_char.............................................64, 146 DW_FORM_block1............................................... 126, 138 
DW_ATE_signed_fixed .....................................64, 65, 146 DW_FORM_block2............................................... 126, 138 
DW_ATE_unsigned .........................................64, 146, 188 DW_FORM_block4............................................... 126, 138 
DW_ATE_unsigned_char.................................64, 146, 188 DW_FORM_data1 ......................................... 126, 138, 188 
DW_ATE_unsigned_fixed .................................64, 65, 147 DW_FORM_data2 ................................................. 126, 138 
DW_CC_hi_user.............................................................152 DW_FORM_data4 ..122, 125, 126, 127, 128, 138, 183, 188 
DW_CC_lo_user.............................................................152 DW_FORM_data8 ..................122, 125, 126, 127, 128, 138 
DW_CC_nocall.........................................................46, 152 DW_FORM_flag.................................................... 127, 138 
DW_CC_normal .......................................................46, 152 DW_FORM_indirect...................................... 125, 139, 188 
DW_CC_program.....................................................46, 152 DW_FORM_ref_addr21, 122, 128, 139, 221, 223, 224, 233 
DW_CFA_advance_loc .......................... 113, 117, 158, 208 DW_FORM_ref_udata................................... 128, 139, 223 
DW_CFA_advance_loc1 ........................................113, 158 DW_FORM_ref1 ........................................... 128, 139, 223 
DW_CFA_advance_loc2 ........................................113, 158 DW_FORM_ref2 ......................................21, 128, 139, 223 
DW_CFA_advance_loc4 ........................................113, 158 DW_FORM_ref4 ..............................21, 128, 139, 188, 223 
DW_CFA_def_cfa.......... 112, 113, 114, 158, 159, 207, 208 DW_FORM_ref8 ........................................... 128, 139, 223 
DW_CFA_def_cfa_expression .......................112, 114, 158 DW_FORM_sdata...........................126, 138, 139, 140, 141 
DW_CFA_def_cfa_offset ....................... 114, 158, 159, 208 DW_FORM_string......................................... 129, 138, 188 
DW_CFA_def_cfa_offset_sf ..................................114, 159 DW_FORM_strp.............................122, 125, 129, 139, 183 
DW_CFA_def_cfa_register ............................114, 158, 208 DW_FORM_udata ......................................... 126, 139, 140 
DW_CFA_def_cfa_sf .............................................113, 159 DW_ID_case_insensitive ........................... 40, 41, 151, 229 
DW_CFA_expression.....................................112, 116, 158 DW_ID_case_sensitive ............................................ 40, 151 
DW_CFA_hi_user ..........................................................159 DW_ID_down_case ................................................. 40, 151 
DW_CFA_lo_user ..........................................................159 DW_ID_up_case ...................................................... 40, 151 
DW_CFA_nop........................ 111, 112, 117, 158, 207, 208 DW_INL_declared_inlined ...............51, 152, 211, 214, 217 
DW_CFA_offset..................................... 115, 158, 159, 208 DW_INL_declared_not_inlined ............................... 51, 152 
DW_CFA_offset_extended.............................115, 158, 159 DW_INL_inlined ..................................................... 51, 152 
DW_CFA_offset_extended_sf................................115, 159 DW_INL_not_inlined .............................................. 51, 152 
DW_CFA_register ..........................................115, 158, 207 DW_LANG_Ada83 ................................................. 38, 150 
DW_CFA_remember_state.....................................117, 158 DW_LANG_Ada95 ................................................. 38, 150 
DW_CFA_restore ...........................................116, 158, 208 DW_LANG_C ................................................. 38, 150, 188 
DW_CFA_restore_extended...................................116, 158 DW_LANG_C_plus_plus ................................ 38, 150, 226 


 
 
Page 250  December 20, 2005 







 Index 
 
 
DW_LANG_C89..............................................38, 150, 188 DW_OP_call4 .............................21, 87, 112, 114, 116, 145 
DW_LANG_C99......................................................38, 150 DW_OP_const1s ...................................................... 15, 142 
DW_LANG_Cobol74...............................................38, 150 DW_OP_const1u...................................................... 15, 142 
DW_LANG_Cobol85...............................................38, 150 DW_OP_const2s ...................................................... 15, 142 
DW_LANG_D..........................................................38, 151 DW_OP_const2u...................................................... 15, 142 
DW_LANG_Fortran77.............................................38, 150 DW_OP_const4s ...................................................... 15, 142 
DW_LANG_Fortran90.....................................38, 150, 229 DW_OP_const4u...................................................... 15, 142 
DW_LANG_Fortran95.............................................39, 150 DW_OP_const8s ...................................................... 15, 142 
DW_LANG_hi_user.......................................................151 DW_OP_const8u...................................................... 15, 142 
DW_LANG_Java .....................................................39, 150 DW_OP_consts ........................................................ 15, 142 
DW_LANG_lo_user.......................................................151 DW_OP_constu........................................................ 15, 142 
DW_LANG_Modula2 ..............................................39, 150 DW_OP_deref.....................................17, 26, 142, 191, 192 
DW_LANG_ObjC....................................................39, 151 DW_OP_deref_size.................................................. 17, 145 
DW_LANG_ObjC_plus_plus...................................39, 151 DW_OP_div............................................................. 19, 143 
DW_LANG_Pascal83 ..............................................39, 150 DW_OP_drop..................................................... 16, 22, 142 
DW_LANG_PLI.......................................................39, 150 DW_OP_dup...................................................... 16, 22, 142 
DW_LANG_UPC.....................................................39, 151 DW_OP_eq .............................................................. 20, 143 
DW_LNE_define_file............................... 98, 103, 104, 156 DW_OP_fbreg.............................................. 16, 25, 26, 144 
DW_LNE_end_sequence................................103, 156, 204 DW_OP_form_tls_address....................................... 18, 145 
DW_LNE_hi_user ..........................................................156 DW_OP_ge .............................................................. 20, 143 
DW_LNE_lo_user ..........................................................156 DW_OP_gt............................................................... 20, 144 
DW_LNE_set_address............................................103, 156 DW_OP_hi_user ............................................................ 145 
DW_LNS_advance_line .........................................101, 155 DW_OP_le ............................................................... 20, 144 
DW_LNS_advance_pc ................... 100, 101, 102, 155, 204 DW_OP_lit0............................................................. 14, 144 
DW_LNS_const_add_pc ........................................101, 155 DW_OP_lit1..................................................... 14, 144, 191 
DW_LNS_copy ......................................................100, 155 DW_OP_lit2................................................................... 192 
DW_LNS_fixed_advance_pc ................... 95, 101, 156, 204 DW_OP_lit31........................................................... 14, 144 
DW_LNS_hi_user omission ...........................................119 DW_OP_lo_user ............................................................ 145 
DW_LNS_lo_user omission ...........................................119 DW_OP_lt................................................................ 20, 144 
DW_LNS_negate_stmt.....................................96, 101, 155 DW_OP_minus ........................................................ 19, 143 
DW_LNS_set_basic_block.....................................101, 155 DW_OP_mod........................................................... 19, 143 
DW_LNS_set_column............................................101, 155 DW_OP_mul............................................................ 19, 143 
DW_LNS_set_epilogue_begin ...............................102, 156 DW_OP_ne ...................................................... 20, 143, 144 
DW_LNS_set_file ..................................................101, 155 DW_OP_neg ............................................................ 19, 143 
DW_LNS_set_isa ...................................................103, 156 DW_OP_nop............................................................ 21, 145 
DW_LNS_set_prologue_end..................................102, 156 DW_OP_not............................................................. 19, 143 
DW_MACINFO_define ......................... 104, 105, 106, 157 DW_OP_or............................................................... 19, 143 
DW_MACINFO_end_file ...................... 104, 105, 106, 157 DW_OP_over..................................................... 16, 22, 142 
DW_MACINFO_start_file ..................... 104, 105, 106, 157 DW_OP_pick ..................................................... 16, 22, 142 
DW_MACINFO_undef .......................... 104, 105, 106, 157 DW_OP_piece.................................................... 24, 26, 145 
DW_MACINFO_vendor_ext .........................104, 106, 157 DW_OP_plus ....................................19, 143, 191, 192, 197 
DW_OP_abs .............................................................19, 143 DW_OP_plus_uconst ......................................... 20, 26, 143 
DW_OP_addr .....................................................14, 25, 142 DW_OP_push_object_address .....18, 75, 86, 112, 114, 116, 


145, 191, 192, 193, 194 DW_OP_and............................................. 19, 143, 191, 192 
DW_OP_bit_piece....................................................24, 145 DW_OP_reg0..................................................... 23, 26, 144 
DW_OP_bra .............................................................21, 143 DW_OP_reg1........................................................... 23, 144 
DW_OP_breg0 .........................................................16, 144 DW_OP_reg10................................................................. 26 
DW_OP_breg1 .........................................................16, 144 DW_OP_reg3................................................................... 26 
DW_OP_breg11 ...............................................................25 DW_OP_reg31......................................................... 23, 144 
DW_OP_breg31 .......................................................16, 144 DW_OP_regx..................................................... 23, 25, 144 
DW_OP_bregx ...................................................16, 26, 144 DW_OP_rot ....................................................... 17, 22, 142 
DW_OP_call_frame_cfa........................... 18, 112, 116, 145 DW_OP_shl ............................................................. 20, 143 
DW_OP_call_ref ................ 21, 87, 112, 114, 116, 145, 183 DW_OP_shr ............................................................. 20, 143 
DW_OP_call2............................. 21, 87, 112, 114, 116, 145 DW_OP_shra ........................................................... 20, 143 


 
 
Page 251  December 20, 2005 







 DWARF Debugging Information Format, Version 3 
 
 
DW_OP_skip............................................................21, 143 DW_TAG_set_type...................................... 6, 83, 131, 173 
DW_OP_swap ....................................................16, 22, 142 DW_TAG_shared_type................................ 6, 68, 133, 173 
DW_OP_xderef ........................................................17, 143 DW_TAG_string_type ................................. 6, 82, 130, 174 
DW_OP_xderef_size ................................................17, 145 DW_TAG_structure_type6, 71, 78, 130, 174, 192, 197, 226 
DW_OP_xor .............................................................20, 143 DW_TAG_subprogram..6, 45, 46, 50, 53, 56, 77, 131, 175, 


199, 200, 202, 211, 214, 215, 217, 218, 227, 230, 231 DW_ORD_col_major ...............................................69, 153 
DW_ORD_row_major..............................................69, 153 DW_TAG_subrange_type 6, 70, 80, 83, 131, 176, 191, 192, 


196, 197, 229 DW_TAG_access_declaration......................6, 74, 131, 163 
DW_TAG_array_type . 6, 69, 130, 163, 191, 192, 196, 197, 


229 
DW_TAG_subroutine_type ......................... 6, 81, 130, 176 
DW_TAG_template_type_parameter......6, 50, 78, 132, 177 


DW_TAG_base_type6, 63, 68, 69, 131, 164, 188, 201, 226, 
231 


DW_TAG_template_value_parameter ......... 6, 78, 132, 177 
DW_TAG_thrown_type............................... 6, 49, 132, 177 


DW_TAG_catch_block ................................6, 58, 131, 164 DW_TAG_try_block.................................... 6, 58, 132, 177 
DW_TAG_class_type..................... 6, 71, 78, 130, 164, 201 DW_TAG_typedef ................................6, 69, 130, 177, 188 
DW_TAG_common_block................... 6, 62, 130, 165, 229 DW_TAG_union_type ............................6, 71, 78, 130, 178 
DW_TAG_common_inclusion ..... 6, 48, 131, 165, 230, 231 DW_TAG_unspecified_parameters ..6, 48, 58, 82, 130, 178 
DW_TAG_compile_unit ..... 6, 37, 123, 130, 165, 188, 223, 


224, 226, 227, 230, 231 
DW_TAG_unspecified_type.................6, 67, 132, 178, 201 
DW_TAG_variable ......6, 53, 59, 68, 69, 80, 132, 178, 193, 


196, 197, 199, 200, 211, 212, 214, 215, 217, 218, 227, 
229, 230 


DW_TAG_condition ....................................6, 80, 132, 165 
DW_TAG_const_type .................... 6, 68, 69, 131, 165, 201 
DW_TAG_constant .................. 6, 59, 66, 80, 131, 166, 229 DW_TAG_variant.................................6, 79, 130, 132, 179 
DW_TAG_dwarf_procedure ........................6, 87, 132, 166 DW_TAG_variant_part................................ 6, 79, 132, 179 
DW_TAG_entry_point .................................6, 45, 130, 166 DW_TAG_volatile_type .........................6, 68, 69, 132, 179 
DW_TAG_enumeration_type................. 6, 70, 80, 130, 167 DW_TAG_with_stmt ................................... 6, 58, 131, 179 
DW_TAG_enumerator .................................6, 81, 131, 167 DW_VIRTUALITY_none ....................................... 29, 149 
DW_TAG_file_type .....................................6, 86, 131, 167 DW_VIRTUALITY_pure_virtual............................ 29, 149 
DW_TAG_formal_parameter .. 6, 58, 59, 82, 130, 168, 202, 


211, 212, 214, 215, 217, 218 
DW_VIRTUALITY_virtual..................................... 29, 149 
DW_VIS_exported................................................... 28, 149 


DW_TAG_friend..........................................6, 74, 131, 168 DW_VIS_local......................................................... 28, 149 
DW_TAG_hi_user..................................................119, 133 DW_VIS_qualified................................................... 28, 149 
DW_TAG_imported_declaration.......... 6, 43, 130, 168, 200 DWARF compression .................................................... 219 
DW_TAG_imported_module ............... 6, 44, 132, 168, 200 DWARF duplicate elimination....................................... 219 
DW_TAG_imported_unit .... 6, 41, 132, 168, 224, 230, 231, 


232 
C example ................................................................. 231 
C++ example............................................................. 225 


DW_TAG_inheritance..................................6, 73, 131, 169 examples ................................................................... 225 
DW_TAG_inlined_subroutine..... 6, 45, 52, 53, 55, 56, 131, 


169, 211, 212, 215, 218 
Fortran example ........................................................ 228 


DWARF expression ......................................................... 14 
DW_TAG_interface_type.............................6, 72, 132, 169 arithmetic operations................................................... 19 
DW_TAG_label............................................6, 57, 130, 169 control flow operations ............................................... 20 
DW_TAG_lexical_block ..............................6, 57, 130, 170 examples ..................................................................... 22 
DW_TAG_lo_user..................................................119, 133 literal encodings .......................................................... 14 
DW_TAG_member . 6, 60, 74, 80, 130, 170, 192, 196, 197, 


226 
logical operations ........................................................ 19 
operator encodings .................................................... 142 


DW_TAG_module .......................................6, 42, 131, 171 register name operators ............................................... 23 
DW_TAG_namelist ......................................6, 62, 131, 171 special operations........................................................ 21 
DW_TAG_namelist_item.............................6, 62, 131, 171 stack operations........................................................... 14 
DW_TAG_namespace .................. 6, 42, 132, 171, 199, 200 DWARF procedure .......................................................... 87 
DW_TAG_packed_type ...............................6, 68, 131, 171 DWARF procedure entry ................................................. 87 
DW_TAG_partial_unit 6, 37, 123, 132, 172, 224, 227, 229, 


231 
DWARF section names, list of....................................... 160 
DWARF Version 2 xi, 1, 2, 3, 4, 14, 96, 111, 120, 121, 125, 


129, 227, 235 DW_TAG_pointer_type ......... 6, 68, 69, 130, 172, 188, 201 
DW_TAG_ptr_to_member_type ..................6, 84, 131, 172 elemental attribute ............................................................ 46 
DW_TAG_reference_type.................... 6, 68, 130, 173, 227 encoding attribute............................................................. 63 
DW_TAG_restrict_type.......................... 6, 68, 69, 132, 173 encoding.................................................................... 146 


 
 
Page 252  December 20, 2005 







 Index 
 
 
end of list entry incomplete class/structure/union ...................................... 71 


incomplete declaration ..................................................... 31 in location list ......................................................27, 146 
in range list ..........................................................33, 159 inheritance entry............................................................... 73 


endianity attribute .......................................................61, 63 initial length ................................................................... 123 
entry PC attribute..............................................................29 initial length field ..................90, 91, 95, 110, 111, 153, 154 


and abstract instance....................................................51 encoding.................................................................... 120 
for inlined subprogram ................................................52 inline attribute ............................................................ 50, 51 


encoding.................................................................... 152 for module initialization ..............................................42 
for subroutine ..............................................................47 inlined subprogram call 


entry point entry................................................................45 examples ................................................................... 209 
enumeration literal .............................. See enumerator entry inlined subprogram entry............................................ 45, 52 
enumeration type entry .....................................................80 in concrete instance..................................................... 53 


as array dimension.................................................70, 81 interface type entry........................................................... 72 
enumerator entry...............................................................81 is optional attribute........................................................... 60 
epilogue .............. 94, 98, 100, 102, 107, 108, 117, 156, 206 Java ............................................................ 3, 39, 71, 72, 73 
error value.......................................................................120 label entry......................................................................... 57 
exception, thrown .............................. See thrown type entry language attribute ....................................................... 38, 69 


language name encoding ................................................ 149 explicit attribute ................................................................77 
extended type (Java) ........................... See inheritance entry LEB128 
extensibility ........................................................................2 examples ................................................................... 140 


signed, decoding of ................................................... 186 extension attribute.............................................................42 
signed, encoding as ........................................... 139, 185 extension, vendor specific...............................................119 
unsigned, decoding of ............................................... 186 external attribute .........................................................46, 59 


FDE .......................................... See frame description entry unsigned, encoding as ....................................... 140, 185 
file containing declaration.................................................31 level-88 condition, COBOL ............................................. 80 
file type entry....................................................................86 lexical block entry ............................................................ 57 


line number information...... See also statement list attribute flag class ...................................................................12, 127 
formal parameter...............................................................48 line number of declaration................................................ 31 
formal parameter entry................................................59, 82 line number opcodes 


in catch block...............................................................58 extended opcode encoding ........................................ 156 
with default value ........................................................60 standard opcode encoding......................................... 155 


formal type parameter.....See template type parameter entry lineptr class .............................................................. 12, 127 
Little Endian Base 128 ..................................... See LEB128 Fortran .................... 1, 3, 38, 45, 47, 62, 82, 84, 86, 87, 189 


common block .......................................................48, 62 little endian byte order 
main program ..............................................................46 effect of....................................................................... 76 


little-endian encoding............................ See endian attribute module (Fortran 90).....................................................42 
use statement .........................................................44, 45 location attribute............................................. 58, 59, 62, 87 


frame base attribute...........................................................48 and abstract instance ................................................... 51 
frame description entry ...................................................111 location description .......................................................... 23 


location expression..... 23, 25, See also DWARF expression friend attribute ..................................................................74 
friend entry .......................................................................74 examples ..................................................................... 25 
function entry....................................... See subroutine entry simple.......................................................................... 23 
fundamental type ................................... See base type entry use in location list ....................................................... 26 
global namespace................... See namespace (C++), global location list ....................................23, 26, 49, 127, 145, 183 
hidden indirection ........................See data location attribute loclistptr class........................................................... 12, 127 
high PC attribute ............... 29, 32, 33, 38, 42, 47, 52, 57, 58 lookup 


and abstract instance....................................................51 by address ................................................................... 91 
identifier case attribute......................................................40 by name....................................................................... 90 


encoding ....................................................................151 low PC attribute.................29, 32, 33, 38, 42, 47, 52, 57, 58 
implementing type (Java).................... See inheritance entry and abstract instance ................................................... 51 
import attribute .....................................................41, 43, 44 lower bound attribute ....................................................... 84 
imported declaration entry ................................................43 default ......................................................................... 84 
imported module entry......................................................44 macinfo types ................................................................. 104 


encoding.................................................................... 157 imported unit entry ...........................................................41 


 
 
Page 253  December 20, 2005 







 DWARF Debugging Information Format, Version 3 
 
 
macptr class ..............................................................12, 128 range list........................................................... 33, 159, 183 
macro formal parameter list ............................................105 rangelistptr class....................................................... 12, 128 
macro information ..........................................................104 ranges attribute ........................29, 33, 38, 42, 47, 52, 57, 58 
macro information attribute ..............................................39 and abstract instance ................................................... 51 
member entry (data)..........................................................74 recursive attribute............................................................. 47 


as discriminant.............................................................79 reference class .......................................................... 12, 128 
member function entry......................................................77 reference type entry.......................................................... 68 


renamed declaration .............See imported declaration entry MIPS instruction set architecture......................................92 
Modula2............................................................1, 39, 42, 58 restricted type entry.......................................................... 68 


definition module ........................................................42 return address attribute ..................................................... 48 
module entry .....................................................................42 and abstract instance ................................................... 51 
mutable attribute ...............................................................74 return type of subroutine .................................................. 47 
name attribute .32, 35, 38, 40, 42, 43, 45, 50, 54, 57, 59, 62, 


63, 67, 69, 71, 72, 74, 78, 81, 82, 83, 85, 86, 90 
sbyte ................................................................... 89, 96, 161 
section group ...................................220, 223, 225, 226, 228 


namelist entry ...................................................................62 name.......................................................................... 222 
namelist item attribute ......................................................62 section length 
namelist item entry ...........................................................62 in .debug_aranges header ............................................ 91 
namespace (C++)..............................................................42 in .debug_pubnames header ................................ 90, 154 


alias .............................................................................44 in .debug_pubtypes header.................................. 90, 154 
example .....................................................................198 use in headers............................................................ 121 
global...........................................................................43 section offset 
std 43 alignment of .............................................................. 160 
unnamed ......................................................................43 in .debug_info header................................................ 123 
using declaration..........................................................44 in .debug_pubnames header ................................ 90, 154 
using directive .............................................................44 in .debug_pubnames offset/name pair......................... 90 


namespace declaration entry .............................................42 in .debug_pubtypes header.......................................... 90 
namespace extension entry ...............................................42 in .debug_pubtypes name/offset pair .......................... 90 
nested abstract instance.....................................................55 in class lineptr value.................................................. 127 
nested concrete inline instance..........................................55 in class loclistptr value.............................................. 127 
non-contiguous address ranges .........................................33 in class macptr value ................................................. 128 
non-defining declaration ...................................................31 in class rangelistptr value.......................................... 128 
normal compilation unit....................................................37 in class reference value ............................................. 128 
object pointer attribute ......................................................77 in class string value................................................... 129 
Objective-C.................................................................39, 77 in FDE header ........................................................... 111 
Objective-C++ ..................................................................39 in macro information attribute .................................... 39 
optional parameter ............................................................60 in statement list attribute ............................................. 39 
ordering attribute ..............................................................69 use in headers............................................................ 121 


encoding ....................................................................153 segment attribute ........................................................ 29, 48 
out-of-line instance ...........See concrete out-of-line instance and abstract instance ................................................... 51 
packed type entry..............................................................68 and data segment......................................................... 60 


segmented addressing............................... See address space parameter ......... See macro formal parameter list, See this 
parameter, See variable parameter attribute, See optional 
parameter attribute, See unspecified parameters entry, 
See template value parameter entry, See template type 
parameter entry, See formal parameter entry 


self pointer attribute ...................See object pointer attribute 
set type entry .................................................................... 83 
shared qualified type ........................................................ 67 
shared qualified type entry ............................................... 68 
sibling attribute................................................................. 13 partial compilation unit .....................................................37 
simple location expression ......................................... 23, 25 Pascal.............................................. 1, 39, 58, 68, 70, 83, 86 
size of an address ..... 13, 14, 17, 26, 27, 33, 34, 83, 91, 110, 


123, 155 
pointer to member type entry............................................84 
pointer type entry..............................................................68 


small attribute................................................................... 66 priority attribute ................................................................42 
specification attribute ..................................... 31, 60, 72, 77 producer attribute..............................................................40 
start scope attribute..................................................... 61, 63 prologue.................. 3, 94, 98, 100, 102, 107, 108, 156, 206 


and abstract instance ................................................... 51 prototyped attribute.....................................................47, 82 
statement list attribute ...................................................... 39 pure attribute.....................................................................47 


 
 
Page 254  December 20, 2005 







 Index 
 
 
static link attribute ............................................................49 
stride attribute See bit stride attribute or byte stride attribute 
string class ................................................................12, 129 
string length attribute ........................................................82 
string type entry ................................................................82 
structure type entry ...........................................................71 
subprogram entry ..............................................................45 


as member function .....................................................77 
use for template instantiation.......................................50 
use in inlined subprogram............................................50 


subrange type entry...........................................................83 
as array dimension.......................................................70 


subroutine type entry ........................................................81 
tag 5 
tag names .................. See also debugging information entry 


list of..............................................................................5 
template instantiation........................................................50 


and special compilation unit ........................................78 
template type parameter entry.....................................50, 78 
template value parameter entry .........................................78 
this parameter..........................................................29, 56 
this pointer attribute ................... See object pointer attribute 
thread-local storage...........................................................18 
threads scaled attribute......................................................83 
thrown exception ............................... See thrown type entry 
thrown type entry..............................................................49 
trampoline (subroutine) entry ...........................................56 
trampoline attribute...........................................................56 
try block entry...................................................................58 
type attribute ...27, 47, 50, 58, 60, 67, 69, 70, 73, 74, 78, 79, 


82, 83, 85, 86 
type modifier entry .See shared type entry, See volatile type 


entry, See reference type entry, See restricted type entry, 
See pointer type entry, See packed type entry, See 
constant type entry 


typedef entry .....................................................................69 
ubyte ...89, 91, 95, 96, 97, 98, 100, 110, 111, 112, 113, 123, 


155, 161 
uhalf........................ 89, 90, 91, 95, 101, 113, 123, 154, 161 
unallocated variable ..........................................................59 
Unified Parallel C ............................. See DW_LANG_UPC 
union type entry ................................................................71 


unnamed namespace.......... See namespace (C++), unnamed 
unspecified parameters attribute....................................... 48 
unspecified parameters entry............................................ 82 


in catch block .............................................................. 58 
unspecified type entry ...................................................... 67 
UPC.......................................68, 83, See DW_LANG_UPC 
uplevel address ................................. See static link attribute 
upper bound attribute ....................................................... 84 


default ......................................................................... 84 
use location attribute ........................................................ 85 
use statement ... See Fortran, use statement, See Fortran, use 


statement 
use UTF-8 attribute ............................... 41, See also UTF-8 
using declaration .. See namespace (C++), using declaration 
using directive .......... See namespace (C++), using directive 
UTF-8......................................................3, 11, 41, 110, 129 
uword ............................................................... 89, 113, 161 
variable entry.................................................................... 59 


examples ................................................................... 189 
in concrete instance..................................................... 53 


variable length data ...........................139, See also LEB128 
variable parameter attribute.............................................. 60 
variant entry ..................................................................... 79 
variant part entry .............................................................. 79 
vendor extensibility .................................................... 2, 119 
vendor extension ............................................................ 216 
vendor id ........................................................................ 119 
version number............................................................... 235 


address lookup table............................................ 91, 154 
call frame information............................... 110, 157, 207 
debug information............................................. 123, 188 
line number information.............................. 95, 155, 203 
name lookup table ............................................... 90, 154 


virtuality attribute................................................. 29, 73, 77 
encoding.................................................................... 149 


visibility attribute ............................................................. 28 
encoding.................................................................... 149 


void type......................................See unspecified type entry 
volatile type entry............................................................. 68 
vtable element location attribute ...................................... 77 
with statement entry ......................................................... 58 


 


 
 
Page 255  December 20, 2005 





		INTRODUCTION

		Purpose and Scope

		Overview

		Vendor Extensibility

		Changes from Version 1 to Version 2

		Changes from Version 2 to Version 3

		Upward Compatibility





		GENERAL DESCRIPTION

		The Debugging Information Entry

		Attribute Types

		Relationship of Debugging Information Entries

		Target Addresses

		DWARF Expressions

		General Operations

		Literal Encodings

		Register Based Addressing

		Stack Operations

		Arithmetic and Logical Operations

		Control Flow Operations

		Special Operations



		Example Stack Operations



		Location Descriptions

		Register Name Operators

		Simple Location Expressions

		Composition Operators

		Location Expressions

		Example Location Expressions

		Location Lists



		Types of Declarations

		Accessibility of Declarations

		Visibility of Declarations

		Virtuality of Declarations

		Artificial Entries

		Segmented Addresses

		Non-Defining Declarations and Completions

		Non-Defining Declarations

		Declarations Completing Non-Defining Declarations



		Declaration Coordinates

		Identifier Names

		Data Locations

		Code Addresses and Ranges

		Single Address

		Contiguous Address Range

		Non-Contiguous Address Ranges



		Entry Address

		Static and Dynamic Properties of Types

		Entity Descriptions



		PROGRAM SCOPE ENTRIES

		Compilation and Importing Entries

		Normal and Partial Compilation Unit Entries

		Imported Unit Entries



		Module, Namespace and Importing Entries

		Module Entries

		Namespace Entries

		Imported (or Renamed) Declaration Entries

		Imported Module Entries



		Subroutine and Entry Point Entries

		General Subroutine and Entry Point Information

		Subroutine and Entry Point Return Types

		Subroutine and Entry Point Locations

		Declarations Owned by Subroutines and Entry Points

		Low-Level Information

		Types Thrown by Exceptions

		Function Template Instantiations

		Inline Subroutines

		Abstract Instances

		Concrete Inlined Instances

		Out-of-Line Instances of Inline Subroutines

		Nested Inline Subroutines



		Trampolines



		Lexical Block Entries

		Label Entries

		With Statement Entries

		Try and Catch Block Entries



		DATA OBJECT AND OBJECT LIST ENTRIES

		Data Object Entries

		Common Block Entries

		Namelist Entries



		TYPE ENTRIES

		Base Type Entries

		Unspecified Type Entries

		Type Modifier Entries

		Typedef Entries

		Array Type Entries

		Structure, Union, Class and Interface Type Entries

		Structure, Union and Class Type Entries

		Interface Type Entries

		Derived or Extended Classes and Interfaces

		Access Declarations

		Friends

		Data Member Entries

		Member Function Entries

		Class Template Instantiations

		Variant Entries



		Condition Entries

		Enumeration Type Entries

		Subroutine Type Entries

		String Type Entries

		Set Entries

		Subrange Type Entries

		Pointer to Member Type Entries

		File Type Entries

		Dynamic Type Properties

		Data Location

		Allocation and Association Status



		DWARF Procedures



		OTHER DEBUGGING INFORMATION

		Accelerated Access

		Lookup by Name

		Lookup by Address



		Line Number Information

		Definitions

		State Machine Registers

		Line Number Program Instructions

		The Line Number Program Header

		The Line Number Program

		Special Opcodes

		Standard Opcodes

		Extended Opcodes





		Macro Information

		Macinfo Types

		Define and Undefine Entries

		Start File Entries

		End File Entries

		Vendor Extension Entries



		Base Source Entries

		Macinfo Entries for Command Line Options

		General Rules and Restrictions



		Call Frame Information

		Structure of Call Frame Information

		Call Frame Instructions

		Row Creation Instructions

		CFA Definition Instructions

		Register Rule Instructions

		Row State Instructions

		Padding Instruction



		Call Frame Instruction Usage

		Call Frame Calling Address





		DATA REPRESENTATION

		Vendor Extensibility

		Reserved Values

		Error Values

		Initial Length Values



		Executable Objects and Shared Objects

		32-Bit and 64-Bit DWARF Formats

		Format of Debugging Information

		Compilation Unit Header

		Debugging Information Entry

		Abbreviations Tables

		Attribute Encodings



		Variable Length Data

		DWARF Expressions and Location Descriptions

		DWARF Expressions

		Location Expressions

		Location Lists



		Base Type Encodings

		Accessibility Codes

		Visibility Codes

		Virtuality Codes

		Source Languages

		Address Class Encodings

		Identifier Case

		Calling Convention Encodings

		Inline Codes

		Array Ordering

		Discriminant Lists

		Name Lookup Tables

		Address Range Table

		Line Number Information

		Macro Information

		Call Frame Information

		Non-contiguous Address Ranges

		Dependencies and Constraints

		Integer Representation Names






