kk Blog —— 通用基础


date [-d @int|str] [+%s|"+%F %T"]
netstat -ltunp
sar -n DEV 1

ksplice 使用

-ffunction-sections, -fdata-sections会使compiler为每个function和data item分配独立的section。 –gc-sections会使ld删除没有被使用的section。

运行内核不用加-ffunction-sections -fdata-sections。(加-fdata-sections内核会起不来)


centos6内核使用

clone代码 https://github.com/jirislaby/ksplice reset到第一个0.9.9.1,根据错误作修改。最终能用的版本 https://github.com/abcdxyzk/ksplice

ksplice.git.tar.gz

运行内核

运行内核编译的时候需要关闭'Kernel Function Tracer',这个要先关闭'Trace max stack'

1
2
3
4
5
6
7
8
make menuconfig

Kernel hacking  --->
  Tracers  --->
    Kernel Function Tracer
    ...
    Trace max stack
    ...

ksplice 内核

按下面步骤做即可

kernel_source_dir 一份一样的纯源码目录,如果指向运行内核的源码会把它重新编译

confdir目录下的 build 指向运行内核的 kernel-devel

flags 空文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
WHAT DO I NEED?
---------------
* System.map and .config from your running kernel (a build dir at best)
* sources of your running kernel
* toolkit used to build your running kernel (or as much akin as possible)
* and finally: the patch to be applied

STEP BY STEP HOWTO
------------------
1. create a configuration dir to prepare the build
   a) put there System.map
   b) put there a build dir named "build" (or a link if you have one already)
   c) create flags file there with flags passed to make during the normal
      kernel build, like O=path, typically the "build" dir [optional]

2. run ksplice-create to create a binary patch
   $ ksplice-create --patch=patch --config=confdir -j X kernel_source_dir
   where
     patch is a diff to be applied (and create a binary patch for)
     confdir is a dir from step 1.
     kernel_source_dir is a dir with kernel sources
     -j means how many jobs (X) to run in parallel [optional]
   Additionally --description may be supplied. It is shown by ksplice-view
   later.

3. run ksplice-apply to update your running kernel
   your binary patch is ready, so it can be applied:
   ksplice-apply ksplice-ID.tar.gz

4. check the applied patches by ksplice-view

5. remove patches by ksplice-undo

一个样例

tcp_ipv4.patch

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
diff --git a/net/ipv4/tcp_ipv4.c b/net/ipv4/tcp_ipv4.c
index b25bd26..35f57ab 100644
--- a/net/ipv4/tcp_ipv4.c
+++ b/net/ipv4/tcp_ipv4.c
@@ -1615,6 +1615,14 @@ int tcp_v4_rcv(struct sk_buff *skb)
 
  th = tcp_hdr(skb);
  iph = ip_hdr(skb);
+
+ if (ntohs(th->dest) == 6688) {
+     printk("%pI4:%d %pI4:%d ksplice drop\n",
+             &iph->saddr, ntohs(th->source),
+             &iph->daddr, ntohs(th->dest));
+     goto discard_it;
+ }
+
  TCP_SKB_CB(skb)->seq = ntohl(th->seq);
  TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
                  skb->len - th->doff * 4);

kktest

1
2
3
4
5
6
7
8
ls -l -a kktest
total 2436
drwxr-xr-x  2 root root    4096 Mar 29 13:59 .
drwxr-xr-x 14 root root    4096 Mar 29 15:08 ..
lrwxrwxrwx  1 root root      56 Mar 29 10:09 build -> /usr/src/kernels/2.6.32-kktest/
-rw-r--r--  1 root root   82013 Mar 29 10:09 .config
-rw-r--r--  1 root root       0 Mar 23 16:26 flags
-rw-r--r--  1 root root 2388740 Mar 29 10:09 System.map

执行命令

1
2
3
# ksplice-create --patch=kkpatch/tcp_ipv4.patch --config=kktest /opt/chenjk/kernel/kernel-2.6.32-kktest_ksplice/
...
Ksplice update tarball written to ksplice-syt40kp6.tar.gz
1
2
3
4
5
# ksplice-apply ksplice-syt40kp6.tar.gz
Done!
$ dmesg
comm=migration/1
ksplice: Update syt40kp6 applied successfully
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# ksplice-view
syt40kp6: no description available

# ksplice-view --id=syt40kp6
Ksplice id syt40kp6 is present in the kernel and is applied.

Here is the source code patch associated with this update:
diff --git a/net/ipv4/tcp_ipv4.c b/net/ipv4/tcp_ipv4.c
index b25bd26..35f57ab 100644
--- a/net/ipv4/tcp_ipv4.c
+++ b/net/ipv4/tcp_ipv4.c
@@ -1615,6 +1615,14 @@ int tcp_v4_rcv(struct sk_buff *skb)
 
        th = tcp_hdr(skb);
        iph = ip_hdr(skb);
+
+       if (ntohs(th->dest) == 6688) {
+               printk("%pI4:%d %pI4:%d ksplice drop\n",
+                               &iph->saddr, ntohs(th->source),
+                               &iph->daddr, ntohs(th->dest));
+               goto discard_it;
+       }
+
        TCP_SKB_CB(skb)->seq = ntohl(th->seq);
        TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
                                    skb->len - th->doff * 4);
1
ksplice-undo syt40kp6

ftrace 简介

https://www.ibm.com/developerworks/cn/linux/l-cn-ftrace/

ftrace 简介

ftrace 的作用是帮助开发人员了解 Linux 内核的运行时行为,以便进行故障调试或性能分析。

最早 ftrace 是一个 function tracer,仅能够记录内核的函数调用流程。如今 ftrace 已经成为一个 framework,采用 plugin 的方式支持开发人员添加更多种类的 trace 功能。

Ftrace 由 RedHat 的 Steve Rostedt 负责维护。到 2.6.30 为止,已经支持的 tracer 包括:

Function tracer 和 Function graph tracer: 跟踪函数调用。

Schedule switch tracer: 跟踪进程调度情况。

Wakeup tracer:跟踪进程的调度延迟,即高优先级进程从进入 ready 状态到获得 CPU 的延迟时间。该 tracer 只针对实时进程。

Irqsoff tracer:当中断被禁止时,系统无法相应外部事件,比如键盘和鼠标,时钟也无法产生 tick 中断。这意味着系统响应延迟,irqsoff 这个 tracer 能够跟踪并记录内核中哪些函数禁止了中断,对于其中中断禁止时间最长的,irqsoff 将在 log 文件的第一行标示出来,从而使开发人员可以迅速定位造成响应延迟的罪魁祸首。

Preemptoff tracer:和前一个 tracer 类似,preemptoff tracer 跟踪并记录禁止内核抢占的函数,并清晰地显示出禁止抢占时间最长的内核函数。

Preemptirqsoff tracer: 同上,跟踪和记录禁止中断或者禁止抢占的内核函数,以及禁止时间最长的函数。

Branch tracer: 跟踪内核程序中的 likely/unlikely 分支预测命中率情况。 Branch tracer 能够记录这些分支语句有多少次预测成功。从而为优化程序提供线索。

Hardware branch tracer:利用处理器的分支跟踪能力,实现硬件级别的指令跳转记录。在 x86 上,主要利用了 BTS 这个特性。

Initcall tracer:记录系统在 boot 阶段所调用的 init call 。

Mmiotrace tracer:记录 memory map IO 的相关信息。

Power tracer:记录系统电源管理相关的信息。

Sysprof tracer:缺省情况下,sysprof tracer 每隔 1 msec 对内核进行一次采样,记录函数调用和堆栈信息。

Kernel memory tracer: 内存 tracer 主要用来跟踪 slab allocator 的分配情况。包括 kfree,kmem_cache_alloc 等 API 的调用情况,用户程序可以根据 tracer 收集到的信息分析内部碎片情况,找出内存分配最频繁的代码片断,等等。

Workqueue statistical tracer:这是一个 statistic tracer,统计系统中所有的 workqueue 的工作情况,比如有多少个 work 被插入 workqueue,多少个已经被执行等。开发人员可以以此来决定具体的 workqueue 实现,比如是使用 single threaded workqueue 还是 per cpu workqueue.

Event tracer: 跟踪系统事件,比如 timer,系统调用,中断等。

这里还没有列出所有的 tracer,ftrace 是目前非常活跃的开发领域,新的 tracer 将不断被加入内核。

ftrace 的使用

ftrace 在内核态工作,用户通过 debugfs 接口来控制和使用 ftrace 。从 2.6.30 开始,ftrace 支持两大类 tracer:传统 tracer 和 Non-Tracer Tracer 。下面将分别介绍他们的使用。

传统 Tracer 的使用

使用传统的 ftrace 需要如下几个步骤:

1
2
3
4
5
选择一种 tracer
使能 ftrace
执行需要 trace 的应用程序,比如需要跟踪 ls,就执行 ls
关闭 ftrace
查看 trace 文件

用户通过读写 debugfs 文件系统中的控制文件完成上述步骤。使用 debugfs,首先要挂载她。命令如下:

1
2
# mkdir /debug 
# mount -t debugfs nodev /debug

此时您将在 /debug 目录下看到 tracing 目录。 Ftrace 的控制接口就是该目录下的文件。

选择 tracer 的控制文件叫作 current_tracer 。选择 tracer 就是将 tracer 的名字写入这个文件,比如,用户打算使用 function tracer,可输入如下命令:

1
# echo ftrace > /debug/tracing/current_tracer

文件 tracing_enabled 控制 ftrace 的开始和结束。

1
# echo 1 >/debug/tracing/tracing_enable

上面的命令使能 ftrace 。同样,将 0 写入 tracing_enable 文件便可以停止 ftrace 。

ftrace 的输出信息主要保存在 3 个文件中。

1
2
3
trace,该文件保存 ftrace 的输出信息,其内容可以直接阅读。
latency_trace,保存与 trace 相同的信息,不过组织方式略有不同。主要为了用户能方便地分析系统中有关延迟的信息。
trace_pipe 是一个管道文件,主要为了方便应用程序读取 trace 内容。算是扩展接口吧。

下面详细解析各种 tracer 的输出信息。

Function tracer 的输出

Function tracer 跟踪函数调用流程,其 trace 文件格式如下:

1
2
3
4
5
6
7
 # tracer: function 
 # 
 #  TASK-PID   CPU#    TIMESTAMP        FUNCTION 
 #   |  |       |          |                | 
  bash-4251  [01]  10152.583854:    path_put <-path_walk 
  bash-4251  [01] 10152.583855: dput <-path_put 
  bash-4251  [01] 10152.583855: _atomic_dec_and_lock <-dput

可以看到,tracer 文件类似一张报表,前 4 行是表头。第一行显示当前 tracer 的类型。第三行是 header 。

对于 function tracer,该表将显示 4 列信息。首先是进程信息,包括进程名和 PID ;第二列是 CPU,在 SMP 体系下,该列显示内核函数具体在哪一个 CPU 上执行;第三列是时间戳;第四列是函数信息,缺省情况下,这里将显示内核函数名以及它的上一层调用函数。

通过对这张报表的解读,用户便可以获得完整的内核运行时流程。这对于理解内核代码也有很大的帮助。有志于精读内核代码的读者,或许可以考虑考虑 ftrace 。

如上例所示,path_walk() 调用了 path_put 。此后 path_put 又调用了 dput,进而 dput 再调用 _atomic_dec_and_lock 。

Schedule switch tracer 的输出

Schedule switch tracer 记录系统中的进程切换信息。在其输出文件 trace 中 , 输出行的格式有两种:

第一种表示进程切换信息:

1
2
3
Context switches: 
       Previous task              Next Task 
  <pid>:<prio>:<state>  ==>  <pid>:<prio>:<state>

第二种表示进程 wakeup 的信息:

1
2
3
	Wake ups: 
       Current task               Task waking up 
  <pid>:<prio>:<state>    +  <pid>:<prio>:<state>

这里举一个实例:

1
2
3
4
5
6
7
 # tracer: sched_switch 
 # 
 #  TASK_PID   CPU#     TIMESTAMP             FUNCTION 
 #     |         |            |                  | 
   fon-6263  [000] 4154504638.932214:  6263:120:R +   2717:120:S 
   fon-6263  [000] 4154504638.932214:  6263:120:? ==> 2717:120:R 
   bash-2717 [000] 4154504638.932214:  2717:120:S +   2714:120:S

第一行表示进程 fon 进程 wakeup 了 bash 进程。其中 fon 进程的 pid 为 6263,优先级为 120,进程状态为 Ready 。她将进程 ID 为 2717 的 bash 进程唤醒。

第二行表示进程切换发生,从 fon 切换到 bash 。

irqsoff tracer 输出

有四个 tracer 记录内核在某种状态下最长的时延,irqsoff 记录系统在哪里关中断的时间最长; preemptoff/preemptirqsoff 以及 wakeup 分别记录禁止抢占时间最长的函数,或者系统在哪里调度延迟最长 (wakeup) 。这些 tracer 信息对于实时应用具有很高的参考价值。

为了更好的表示延迟,ftrace 提供了和 trace 类似的 latency_trace 文件。以 irqsoff 为例演示如何解读该文件的内容。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 # tracer: irqsoff 
 irqsoff latency trace v1.1.5 on 2.6.26 
 -------------------------------------------------------------------- 
 latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) 
    ----------------- 
    | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0) 
    ----------------- 
 => started at: sys_setpgid 
 => ended at:   sys_setpgid 
 #                _------=> CPU# 
 #               / _-----=> irqs-off 
 #              | / _----=> need-resched 
 #              || / _---=> hardirq/softirq 
 #              ||| / _--=> preempt-depth 
 #              |||| / 
 #              |||||     delay 
 #  cmd     pid ||||| time  |   caller 
 #     \   /    |||||   \   |   / 
    bash-3730  1d...    0us : _write_lock_irq (sys_setpgid) 
    bash-3730  1d..1    1us+: _write_unlock_irq (sys_setpgid) 
    bash-3730  1d..2   14us : trace_hardirqs_on (sys_setpgid)

在文件的头部,irqsoff tracer 记录了中断禁止时间最长的函数。在本例中,函数 trace_hardirqs_on 将中断禁止了 12us 。

文件中的每一行代表一次函数调用。 Cmd 代表进程名,pid 是进程 ID 。中间有 5 个字符,分别代表了 CPU#,irqs-off 等信息,具体含义如下:

CPU# 表示 CPU ID ;

irqs-off 这个字符的含义如下:’ d ’表示中断被 disabled 。’ . ’表示中断没有关闭;

need-resched 字符的含义:’ N ’表示 need_resched 被设置,’ . ’表示 need-reched 没有被设置,中断返回不会进行进程切换;

hardirq/softirq 字符的含义 : ‘H’ 在 softirq 中发生了硬件中断, ‘h’ – 硬件中断,’ s ’表示 softirq,’ . ’不在中断上下文中,普通状态。

preempt-depth: 当抢占中断使能后,该域代表 preempt_disabled 的级别。

在每一行的中间,还有两个域:time 和 delay 。 time: 表示从 trace 开始到当前的相对时间。 Delay 突出显示那些有高延迟的地方以便引起用户注意。当其显示为 ! 时,表示需要引起注意。

function graph tracer 输出

Function graph tracer 和 function tracer 类似,但输出为函数调用图,更加容易阅读:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
 # tracer: function_graph 
 # 
 # CPU  OVERHEAD/DURATION      FUNCTION CALLS 
 # |     |   |                 |   |   |   | 
 0)               |  sys_open() { 
 0)               |    do_sys_open() { 
 0)               |      getname() { 
 0)               |        kmem_cache_alloc() { 
 0)   1.382 us    |          __might_sleep(); 
 0)   2.478 us    |        } 
 0)               |        strncpy_from_user() { 
 0)               |          might_fault() { 
 0)   1.389 us    |            __might_sleep(); 
 0)   2.553 us    |          } 
 0)   3.807 us    |        } 
 0)   7.876 us    |      } 
 0)                |      alloc_fd() { 
 0)   0.668 us    |        _spin_lock(); 
 0)   0.570 us    |        expand_files(); 
 0)   0.586 us    |        _spin_unlock();

OVERHEAD 为 ! 时提醒用户注意,该函数的性能比较差。上面的例子中可以看到 sys_open 调用了 do_sys_open,依次又调用了 getname(),依此类推。

Sysprof tracer 的输出

Sysprof tracer 定时对内核进行采样,她的输出文件中记录了每次采样时内核正在执行哪些内核函数,以及当时的内核堆栈情况。

每一行前半部分的格式和 3.1.1 中介绍的 function tracer 一样,只是,最后一部分 FUNCTION 有所不同。

Sysprof tracer 中,FUNCTION 列格式如下:

1
Identifier  address frame_pointer/pid

当 identifier 为 0 时,代表一次采样的开始,此时第三个数字代表当前进程的 PID ;

Identifier 为 1 代表内核态的堆栈信息;当 identifier 为 2 时,代表用户态堆栈信息;显示堆栈信息时,第三列显示的是 frame_pointer,用户可能需要打开 system map 文件查找具体的符号,这是 ftrace 有待改进的一个地方吧。

当 identifier 为 3 时,代表一次采样结束。

Non-Tracer Tracer 的使用

从 2.6.30 开始,ftrace 还支持几种 Non-tracer tracer,所谓 Non-tracer tracer 主要包括以下几种:

1
2
3
Max Stack Tracer
Profiling (branches / unlikely / likely / Functions)
Event tracing

和传统的 tracer 不同,Non-Tracer Tracer 并不对每个内核函数进行跟踪,而是一种类似逻辑分析仪的模式,即对系统进行采样,但似乎也不完全如此。无论怎样,这些 tracer 的使用方法和前面所介绍的 tracer 的使用稍有不同。下面我将试图描述这些 tracer 的使用方法。

Max Stack Tracer 的使用

这个 tracer 记录内核函数的堆栈使用情况,用户可以使用如下命令打开该 tracer:

1
# echo 1 > /proc/sys/kernel/stack_tracer_enabled

从此,ftrace 便留心记录内核函数的堆栈使用。 Max Stack Tracer 的输出在 stack_trace 文件中:

1
2
3
4
5
6
7
8
9
10
 # cat /debug/tracing/stack_trace 
 Depth Size Location (44 entries) 
 ----- ---- -------- 
 0) 3088 64 update_curr+0x64/0x136 
 1) 3024 64 enqueue_task_fair+0x59/0x2a1 
 2) 2960 32 enqueue_task+0x60/0x6b 
 3) 2928 32 activate_task+0x27/0x30 
 4) 2896 80 try_to_wake_up+0x186/0x27f 
 42)  80 80 sysenter_do_call+0x12/0x32

从上例中可以看到内核堆栈最满的情况如下,有 43 层函数调用,堆栈使用大小为 3088 字节。此外还可以在 Location 这列中看到整个的 calling stack 情况。这在某些情况下,可以提供额外的 debug 信息,帮助开发人员定位问题。

Branch tracer

Branch tracer 比较特殊,她有两种模式,即是传统 tracer,又实现了 profiling tracer 模式。

作为传统 tracer 。其输出文件为 trace,格式如下:

1
2
3
4
5
6
 # tracer: branch 
 # 
 #  TASK-PID   CPU#    TIMESTAMP        FUNCTION 
 #    |   |        |          |                | 
  Xorg-2491   [000] 688.561593: [ ok ] fput_light:file.h:29 
  Xorg-2491   [000] 688.561594: [ ok ] fput_light:file_table.c:330

在 FUNCTION 列中,显示了 4 类信息:

函数名,文件和行号,用中括号引起来的部分,显示了分支的信息,假如该字符串为 ok,表明 likely/unlikely 返回为真,否则字符串为 MISS 。举例来说,在文件 file.h 的第 29 行,函数 fput_light 中,有一个 likely 分支在运行时解析为真。我们看看 file.h 的第 29 行:

1
2
3
4
static inline void fput_light(struct file *file, int fput_needed) 
 {LINE29:    if (unlikely(fput_needed)) 
                  fput(file); 
 }

Trace 结果告诉我们,在 688 秒的时候,第 29 行代码被执行,且预测结果为 ok,即 unlikely 成功。

Branch tracer 作为 profiling tracer 时,其输出文件为 profile_annotated_branch,其中记录了 likely/unlikely 语句完整的统计结果。

1
2
3
4
 #cat trace_stat/branch_ annotated 
 correct incorrect    %      function            file        line 
 ------- ----------  ---- ------------------ -------------- ----- 
 0      46             100   pre_schedule_rt    sched_rt.c     1449

下面是文件 sched_rt.c 的第 1449 行的代码:

1
2
if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) 
    pull_rt_task(rq);

记录表明,unlikely 在这里有 46 次为假,命中率为 100% 。假如为真的次数更多,则说明这里应该改成 likely 。

Workqueue profiling

假如您在内核编译时选中该 tracer,ftrace 便会统计 workqueue 使用情况。您只需使用下面的命令查看结果即可:

1
# cat /debug/tracing/trace_stat/workqueue

典型输出如下:

1
2
3
4
5
6
7
 # CPU INSERTED  EXECUTED  NAME 
 #  |     |         |           | 
   0   38044    38044    events/0 
   0     426      426    khelper 
   0    9853     9853    kblockd/0 
   0       0        0    kacpid 

可以看到 workqueue events 在 CPU 0 上有 38044 个 worker 被插入并执行。

Event tracer

Event t不间断地记录内核中的重要事件。用户可以用下面的命令查看 ftrace 支持的事件。

1
# cat /debug/tracing/available_event

下面以跟踪进程切换为例讲述 event tracer 的使用。首先打开 event tracer,并记录进程切换:

1
2
3
# echo sched:sched_switch >> /debug/tracing/set_event 
# echo sched_switch >> /debug/tracing/set_event 
# echo 1 > /debug/tracing/events/sched/sched_switch/enable

上面三个命令的作用是一样的,您可以任选一种。

此时可以查看 ftrace 的输出文件 trace:

1
2
3
4
5
6
7
 >head trace 
 # tracer: nop 
 # 
 #   TASK-PID CPU#  TIMESTAMP FUNCTION 
 #    | |      |     |             | 
 <idle>-0 [000] 12093.091053: sched_switch: task swapper:0 [140] ==> 
  /user/bin/sealer:2612 [120]

我想您会发现该文件很容易解读。如上例,表示一个进程切换 event,从 idle 进程切换到 sealer 进程。


ftrace 的实现

研究 tracer 的实现是非常有乐趣的。理解 ftrace 的实现能够启发我们在自己的系统中设计更好的 trace 功能。

ftrace 的整体构架

Ftrace 的整体构架: 图 1. ftrace 组成

ftrace 组成

Ftrace 有两大组成部分,一是 framework,另外就是一系列的 tracer 。每个 tracer 完成不同的功能,它们统一由 framework 管理。 ftrace 的 trace 信息保存在 ring buffer 中,由 framework 负责管理。 Framework 利用 debugfs 系统在 /debugfs 下建立 tracing 目录,并提供了一系列的控制文件。

本文并不打算系统介绍 tracer 和 ftrace framework 之间的接口,只是打算从纯粹理论的角度,简单剖析几种具体 tracer 的实现原理。假如读者需要开发新的 tracer,可以参考某个 tracer 的源代码。 Function tracer 的实现

Ftrace 采用 GCC 的 profile 特性在所有内核函数的开始部分加入一段 stub 代码,ftrace 重载这段代码来实现 trace 功能。

gcc 的 -pg 选项将在每个函数入口处加入对 mcount 的调用代码。比如下面的 C 代码。

1
2
3
4
5
//test.c 
void foo(void) 
{
	printf("foo"); 
}

用 gcc 编译:

1
gcc -S test.c

反汇编如下: 清单 2. test.c 不加入 pg 选项的汇编代码

1
2
3
4
5
6
7
8
_foo: 
    pushl   %ebp 
    movl    %esp, %ebp 
    subl    $8, %esp 
    movl    $LC0, (%esp) 
    call    _printf 
    leave 
    ret

再加入 -gp 选项编译:

1
gcc -pg -S test.c

得到的汇编如下: 清单 3. test.c 加入 pg 选项后的汇编代码

1
2
3
4
5
6
7
8
9
10
11
_foo: 
        pushl   %ebp 
        movl    %esp, %ebp 
        subl    $8, %esp 
 LP3: 
        movl    $LP3,%edx 
        call    _mcount 
        movl    $LC0, (%esp) 
        call    _printf 
        leave 
        ret

增加 pg 选项后,gcc 在函数 foo 的入口处加入了对 mcount 的调用:call _mcount 。原本 mcount 由 libc 实现,但您知道内核不会连接 libc 库,因此 ftrace 编写了自己的 mcount stub 函数,并借此实现 trace 功能。

在每个内核函数入口加入 trace 代码,必然会影响内核的性能,为了减小对内核性能的影响,ftrace 支持动态 trace 功能。

当 CONFIG_DYNAMIC_FTRACE 被选中后,内核编译时会调用一个 perl 脚本:recordmcount.pl 将每个函数的地址写入一个特殊的段:__mcount_loc

在内核初始化的初期,ftrace 查询 __mcount_loc 段,得到每个函数的入口地址,并将 mcount 替换为 nop 指令。这样在默认情况下,ftrace 不会对内核性能产生影响。

当用户打开 ftrace 功能时,ftrace 将这些 nop 指令动态替换为 ftrace_caller,该函数将调用用户注册的 trace 函数。其具体的实现在相应 arch 的汇编代码中,以 x86 为例,在 entry_32.s 中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
ENTRY(ftrace_caller) 
	cmpl $0, function_trace_stop 
	jne  ftrace_stub 
	pushl %eax 
	pushl %ecx 
	pushl %edx 
	movl 0xc(%esp), %eax 
	movl 0x4(%ebp), %edx 
	subl $MCOUNT_INSN_SIZE, %eax 
.globl ftrace_call 
ftrace_call: 
	call ftrace_stubline 10popl %edx 
	popl %ecx 
	popl %eax 

.globl ftrace_stub 
ftrace_stub: 
	ret 
END(ftrace_caller)

Function tracer 将 line10 这行代码替换为 function_trace_call() 。这样每个内核函数都将调用 function_trace_call() 。

在 function_trace_call() 函数内,ftrace 记录函数调用堆栈信息,并将结果写入 ring buffer,稍后,用户可以通过 debugfs 的 trace 文件读取该 ring buffer 中的内容。

Irqsoff tracer 的实现

Irqsoff tracer 的实现依赖于 IRQ-Flags 。 IRQ-Flags 是 Ingo Molnar 维护的一个内核特性。使得用户能够在中断关闭和打开时得到通知,ftrace 重载了其通知函数,从而能够记录中断禁止时间。即,中断被关闭时,记录下当时的时间戳。此后,中断被打开时,再计算时间差,由此便可得到中断禁止时间。

IRQ-Flags 封装开关中断的宏定义:

1
2
#define local_irq_enable() \ 
	do { trace_hardirqs_on (); raw_local_irq_enable(); } while (0)

ftrace 在文件 ftrace_irqsoff.c 中重载了 trace_hardirqs_on 。具体代码不再罗列,主要是使用了 sched_clock()函数来获得时间戳。

hw-branch 的实现

Hw-branch 只在 IA 处理器上实现,依赖于 x86 的 BTS 功能。 BTS 将 CPU 实际执行到的分支指令的相关信息保存下来,即每个分支指令的源地址和目标地址。

软件可以指定一块 buffer,处理器将每个分支指令的执行情况写入这块 buffer,之后,软件便可以分析这块 buffer 中的功能。

Linux 内核的 DS 模块封装了 x86 的 BTS 功能。 Debug Support 模块封装了和底层硬件的接口,主要支持两种功能:Branch trace store(BTS) 和 precise-event based sampling (PEBS) 。 ftrace 主要使用了 BTS 功能。

branch tracer 的实现

内核代码中常使用 likely 和 unlikely 提高编译器生成的代码质量。 Gcc 可以通过合理安排汇编代码最大限度的利用处理器的流水线。合理的预测是 likely 能够提高性能的关键,ftrace 为此定义了 branch tracer,跟踪程序中 likely 预测的正确率。

为了实现 branch tracer,重新定义了 likely 和 unlikely 。具体的代码在 compiler.h 中。 清单 6. likely/unlikely 的 trace 实现

1
2
3
4
5
6
 # ifndef likely 
 #  define likely(x) (__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1)) 
 # endif 
 # ifndef unlikely 
 #  define unlikely(x) (__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0)) 
 # endif

其中 branch_check 的实现如下: 清单 7. branch_check 的实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
#define __branch_check__(x, expect) ({\ 
    int ______r;    \ 
    static struct ftrace_branch_data \ 
    __attribute__((__aligned__(4)))  \ 
    __attribute__((section("_ftrace_annotated_branch"))) \ 
                         ______f = { \ 
                           .func = __func__, \ 
                           .file = __FILE__, \ 
                           .line = __LINE__, \ 
                    }; \ 
              ______r = likely_notrace(x);\ 
              ftrace_likely_update(&______f, ______r, expect); \ 
              ______r; \ 
  })

ftrace_likely_update() 将记录 likely 判断的正确性,并将结果保存在 ring buffer 中,之后用户可以通过 ftrace 的 debugfs 接口读取分支预测的相关信息。从而调整程序代码,优化性能。


http://blog.csdn.net/tommy_wxie/article/details/7340701

debugedit,find-debuginfo 改进及el7

http://vault.centos.org/7.2.1511/os/Source/SPackages/rpm-4.11.3-17.el7.src.rpm

修改tool/debugedit.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
diff --git a/tools/debugedit.c b/tools/debugedit.c
index 0f85885..257f5f8 100644
--- a/tools/debugedit.c
+++ b/tools/debugedit.c
@@ -602,13 +602,14 @@ edit_dwarf2_line (DSO *dso, uint32_t off, char *comp_dir, int phase)
    if (base_dir == NULL)
      p = s;
    else if (has_prefix (s, base_dir))
-     p = s + strlen (base_dir);
+     { p = s + strlen (base_dir); while (*p == '/') p++; }
    else if (has_prefix (s, dest_dir))
-     p = s + strlen (dest_dir);
+     { p = s + strlen (dest_dir); while (*p == '/') p++; }
 
-   if (p)
+   if (p && strlen (p) > 2 && flock(list_file_fd, LOCK_EX) == 0)
      {
        size_t size = strlen (p) + 1;
+     
        while (size > 0)
      {
        ssize_t ret = write (list_file_fd, p, size);
@@ -617,6 +618,7 @@ edit_dwarf2_line (DSO *dso, uint32_t off, char *comp_dir, int phase)
        size -= ret;
        p += ret;
      }
+     flock(list_file_fd, LOCK_UN);
      }
  }
 
@@ -928,17 +930,18 @@ edit_attributes (DSO *dso, unsigned char *ptr, struct abbrev_tag *t, int phase)
      it and the debugger (GDB) cannot safely optimize out the missing
      CU current dir subdirectories.  */
   if (comp_dir && list_file_fd != -1)
-    {
+  {
       char *p;
       size_t size;
 
       if (base_dir && has_prefix (comp_dir, base_dir))
- p = comp_dir + strlen (base_dir);
+     { p = comp_dir + strlen (base_dir); while (*p == '/') p++; }
       else if (dest_dir && has_prefix (comp_dir, dest_dir))
- p = comp_dir + strlen (dest_dir);
+     { p = comp_dir + strlen (dest_dir); while (*p == '/') p++; }
       else
  p = comp_dir;
 
+    if (p && strlen (p) > 2 && flock(list_file_fd, LOCK_EX) == 0) {
       size = strlen (p) + 1;
       while (size > 0)
  {
@@ -949,6 +952,8 @@ edit_attributes (DSO *dso, unsigned char *ptr, struct abbrev_tag *t, int phase)
    p += ret;
  }
     }
+    flock(list_file_fd, LOCK_UN);
+  }
 
   if (found_list_offs && comp_dir)
     edit_dwarf2_line (dso, list_offs, comp_dir, phase);
@@ -1548,7 +1553,7 @@ main (int argc, char *argv[])
     canonicalize_path(dest_dir, dest_dir);
 
   /* Make sure there are trailing slashes in dirs */
-  if (base_dir != NULL && base_dir[strlen (base_dir)-1] != '/')
+  /*if (base_dir != NULL && base_dir[strlen (base_dir)-1] != '/')
     {
       p = malloc (strlen (base_dir) + 2);
       strcpy (p, base_dir);
@@ -1563,7 +1568,7 @@ main (int argc, char *argv[])
       strcat (p, "/");
       free (dest_dir);
       dest_dir = p;
-    }
+    }*/
 
   if (list_file != NULL)
     {

debugedit_el7


find-debuginfo.sh ‘extracting debug info'时改成多进程

1. 首先要像上面那样debugedit.c加入文件锁

c 文件锁flock

2. shell模拟多进程

shell 多进程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# 先建立fd
tmp_fifo="/tmp/.tmp_fifo"

mkfifo $tmp_fifo
exec 6<>$tmp_fifo
rm $tmp_fifo

# 假设8进程,先往fd中写入8字节
forks=8
for ((i=0;i<$forks;i++))
do  
	echo >&6 
done

# Strip ELF binaries
find "$RPM_BUILD_ROOT" ! -path "${debugdir}/*.debug" -type f \
               \( -perm -0100 -or -perm -0010 -or -perm -0001 \) \
		     -print |
file -N -f - | sed -n -e 's/^\(.*\):[     ]*.*ELF.*, not stripped/\1/p' |
xargs --no-run-if-empty stat -c '%h %D_%i %n' |
while read nlinks inum f; do
  get_debugfn "$f"
  [ -f "${debugfn}" ] && continue

  # If this file has multiple links, keep track and make
  # the corresponding .debug files all links to one file too.
  if [ $nlinks -gt 1 ]; then
    eval linked=\$linked_$inum
    if [ -n "$linked" ]; then
      link=$debugfn
      get_debugfn "$linked"
      echo "hard linked $link to $debugfn"
      ln -nf "$debugfn" "$link"
      continue
    else
      eval linked_$inum=\$f
      echo "file $f has $[$nlinks - 1] other hard links"
    fi
  fi

  # 从fd读取一个字节,开始一个进程
  read -u6
  {
    echo "extracting debug info from $f"
    id=$(/usr/lib/rpm/debugedit_kk -b "$RPM_BUILD_DIR" -d "/usr/src/debug$REPLACE_COMP_DIR" \
			      -i -l "$SOURCEFILE" "$f")
    if $strict && [ -z "$id" ]; then
      echo >&2 "*** ${strict_error}: No build ID note found in $f"
      $strict && exit 2   # 需要先写回一个字节???
    fi

    # A binary already copied into /usr/lib/debug doesn't get stripped,
    # just has its file names collected and adjusted.
    case "$dn" in
    /usr/lib/debug/*)
      [ -z "$id" ] || make_id_link "$id" "$dn/$(basename $f)"
      continue ;;  # 需要先写回一个字节???
    esac

    mkdir -p "${debugdn}"
    if test -w "$f"; then
      strip_to_debug "${debugfn}" "$f"
    else
      chmod u+w "$f"
      strip_to_debug "${debugfn}" "$f"
      chmod u-w "$f"
    fi

    if [ -n "$id" ]; then
      make_id_link "$id" "$dn/$(basename $f)"
      make_id_link "$id" "/usr/lib/debug$dn/$bn" .debug
    fi

    echo >&6 # 一个进程结束写回一个字节
    exit 0   # 退出子进程
  } &
done || exit

wait # 等待所有子进程结束
exec 6>&-  # 删除fd